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Abstract

We study the approximate minimization problem of weighted finite automata (WFAs):
given a WFA, we want to compute its optimal approximation when restricted to a given
size. We reformulate the problem as a rank-minimization task in the spectral norm, and
propose a framework to apply Adamyan-Arov-Krein (AAK) theory to the approximation
problem. This approach has already been successfully applied to the case of WFAs and
language modelling black boxes over one-letter alphabets (Balle et al., 2021; Lacroce et al.,
2021). Extending the result to multi-letter alphabets requires solving the following two
steps. First, we need to reformulate the approximation problem in terms of noncommu-
tative Hankel operators and noncommutative functions, in order to apply results from
multivariable operator theory. Secondly, to obtain the optimal approximation we need a
version of noncommutative AAK theory that is constructive. In this paper, we successfully
tackle the first step, while the second challenge remains open.

Keywords: Approximate minimization, Hankel matrices, AAK theory, weighted finite
automata, language modelling.

1. Introduction

The problem of minimizing an automaton has been well studied over the past seventy years.
When dealing with quantitative models, like weighted or probabilistic automata, it becomes
possible to define quantitative notions of model similarity, and to find approximately mini-
mal approximations. In particular, given a minimal weighted finite automaton (WFA), the
approximate minimization problem consists in finding a WFA, smaller than the minimal
one, that mimics its behaviour. We are interested in quantifying and minimizing the ap-
proximation error. The approximate minimization problem is strictly related to knowledge
distillation and extraction tasks (Weiss et al., 2019; Okudono et al., 2020; Eyraud and Ay-
ache, 2020; Ayache et al., 2018; Rabusseau et al., 2019). When the solution of the problem
is optimal, this approach has a clear advantage compared to other methods, as it allows us
to search for the best WFA among those of a predefined size. This is particularly useful
when dealing with limited computing resources, or to improve interpretability.

Several norms can be considered to estimate the error. The approximate minimization
problem was formalized by Balle et al. (2019), and the error measured with respect to the
ℓ2 norm. In this paper, we reformulate the problem in terms of its Hankel matrix H and
look for a low-rank approximation in the spectral norm. This norm has the advantage that
it can be used to compare different classes of models. Moreover, it is possible to find (and
compute) a global minimum for the error in polynomial time (Balle et al., 2021). In fact,
the celebrated Adamyan-Arov-Krein (AAK) theory provides a way, based on properties of
Hankel operators and complex functions, to find the optimal approximation of H within
the class of Hankel matrices. We lay out a framework for the application of this theory
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to the approximate minimization problem, analyzing the case of one-letter and multi-letter
alphabet separately. In the first case, standard AAK theory can be applied, and the proof
of the AAK theorem tells us how to construct the optimal approximation. This setting
has been studied by Balle et al. (2021) to obtain an algorithm, based on AAK theory,
returning the optimal approximation of a class of WFAs. Lacroce et al. (2021) generalize this
approach to find an (asymptotically) optimal approximation of a general black-box model
trained for language modelling on sequential data, still under the one-letter assumption.
Extending the work to the multi-letter case requires a noncommutative (NC) version of
AAK theory. Tackling this problem is fundamental for the application of these results
and to experimentally compare the performance of the spectral norm against other norms
(behavioral metrics, word error rate, or normalized discounted cumulative gain). To achieve
this, two challenges need to be addressed. First, to apply the AAK theorem it is necessary
to reformulate the approximation problem in terms of NC Hankel operators, defined in an
appropriate NC space. Second, we need a constructive version of this theorem to find the
optimal approximation. In this paper, we tackle the first challenge and make the following
contributions. We start by summarizing the approach used by Balle et al. (2021); Lacroce
et al. (2021) in the one-letter case. Then, we reformulate the approximate minimization
problem of models over multi-letter alphabets in terms of NC Hankel operators. Finally,
we suggest a way to link the Hankel matrix of a WFA to a NC rational function. While the
second challenge remains open, this constitutes a first, encouraging step towards its solution,
since the rational function is key in the construction of the optimal approximation.

2. Background

Let N, Z and R be the sets of natural, integers and real numbers, respectively. Given
M ∈ Rd1×d2 , N ∈ Rd′1×d′2 we denote their Kronecker product by M⊗N ∈ Rd1d′1×d2d′2 with
entries given by (M⊗N)((i−1)d′1+i

′, (j−1)d′2+j
′) = M(i, j)N(i′, j′). LetM ∈ Rp×q of rank

n, the compact singular value decomposition SVD of M is the factorization M = UDV⊤,
where U ∈ Rp×n, D ∈ Rn×n, V ∈ Rq×n are such that U⊤U = V⊤V = 1, where 1 denotes
the identity matrix, and D is a diagonal matrix. The columns of U and V are called left and
right singular vectors, while the diagonal entries of D are the singular values. The spectral
radius ρ(M) of M is the largest modulus among its eigenvalues. Let ℓ2 be the space of
square-summable sequences over N. Let Lp(T) be the space of measurable functions on
T = {z ∈ C : |z| = 1} for which the p-th power of the absolute value is Lebesgue integrable.

2.1. Hankel matrix and Weighted Automata

Let Σ be a fixed finite alphabet, Σ∗ the set of all finite strings with symbols in Σ, and ε
the empty string. Given p, s ∈ Σ∗, we denote with ps their concatenation. Let f : Σ∗ → R,
we can consider a matrix Hf ∈ RΣ∗×Σ∗

having rows and columns indexed by strings and
defined by Hf (p, s) = f(ps) for p, s ∈ Σ∗.

Definition 1 A (bi-infinite) matrix H ∈ RΣ∗×Σ∗
is Hankel if for all p, p′, s, s′ ∈ Σ∗ such

that ps = p′s′, we have H(p, s) = H(p′, s′). Given a Hankel matrix H ∈ RΣ∗×Σ∗
, there

exists a unique function f : Σ∗ → R such that Hf = H.
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A weighted finite automaton (WFA) of n states over Σ is a tuple A = ⟨α, {Aa},β⟩,
where α, β ∈ Rn are the vector of initial and final weights, respectively, and Aa ∈ Rn×n is
the transition matrix associated with each symbol a ∈ Σ. In this paper, we only consider
automata with real weights. In this case, every WFA A realizes a function fA : Σ∗ → R,
i.e., given a string x = x1 · · ·xt ∈ Σ∗, it returns fA(x) = α⊤Ax1 · · ·Axtβ = α⊤Axβ. Note
that f can be realized by a WFA if and only if Hf has finite rank n, in which case n is the
minimal number of states of any WFA realizing f (Carlyle and Paz, 1971; Fliess, 1974).

2.2. Hankel Operators and AAK Theory

Given a function f : N → R, we consider the Hankel matrix Hf defined by Hf (i, j) =
f(i + j). This matrix can be interpreted as the expression of a linear Hankel operator
Hf : ℓ2 → ℓ2 in terms of the canonical basis of the sequence space. Alternatively, using
the Fourier isomorphism, Hankel operators can be defined in a complex function space. In
fact, ℓ2 can be embedded into ℓ2(Z), which is isomorphic to L2(T). Therefore, to each
sequence µ = (µ0, µ1, . . . ) ∈ ℓ2 we can associate two functions, µ− =

∑∞
j=0µjz

−j−1 and

µ+ =
∑∞

j=0µjz
j . Conversely, we can associate any given function ϕ ∈ L2(T) with the

sequence of its Fourier coefficients ϕ̂(n). The function space L2(T) can be partitioned
into two orthogonal subspaces, the Hardy space H2 and the negative Hardy space H2

−,
containing functions that have only positive or negative Fourier coefficients, respectively.
Note that H2 is isomorphic to the set of square-integrable functions analytic on the disc.
For a detailed presentation of these results we refer the reader to Nikol’Skii (2002).

Definition 2 Let ϕ be a function in the space L2(T). A Hankel operator is an operator
Hϕ : H2 → H2

− defined by Hϕf = P−ϕf . The function ϕ is said to be a symbol of Hϕ.

We remark that the symbol is not unique, and that we have ∥Hϕ∥ ≤ ∥ϕ∥∞ (Nehari, 1957).
Every Hankel matrix H satisfies the Hankel property H(j, k) = {αj+k}j,k≥0. Another

way to express this property is to rephrase it as an operator identity. We consider the
shift operator S, with S(x0, x1, . . . ) = (0, x0, x1, . . . ) and denote its left inverse by S∗.
An operator H is Hankel if and only if the following Hankel equation is satisfied:

HS = S∗H. (1)

Alternatively, we can consider the shift operator S in the function space, and generalize
Equation (1) for operators H : H2 → H2

−:

HS = P−SH. (2)

We can now introduce the main result of Adamyan et al. (1971).

Theorem 3 (AAK Theorem) Let Hϕ be a compact Hankel operator of rank n, matrix
H and singular numbers σ0 ≥ · · · ≥ σn−1 > 0. Then there exists a unique Hankel operator
Hg with matrix G of rank k < n such that: ∥Hϕ −Hg∥ = ∥H−G∥ = σk. We say that G
is the optimal approximation of size k of H.

The proof of this theorem relies on ϕ and g, the symbols of the original operator and of the
best approximation, respectively, and on the following fundamental inequality:

∥Hϕ −Hg∥ ≤ ∥ϕ− g∥∞ ≤ σk. (3)

The symbol of a finite-rank Hankel operator is a rational function (Kronecker, 1881).
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2.3. Multivariable Operator Theory

The ideal formalism to extend the previous results to a NC setting is provided by Fock
spaces. Let Hn be a Hilbert space, H⊗k

n the tensor product of k copies of Hn, and H⊗0
n := C.

Definition 4 Let Hn be a n-dimensional Hilbert space. The Fock space F 2 of Hn is:

F 2 = F 2(Hn) =
⊕
k≥0

H⊗k
n = C⊕Hn ⊕ (Hn ⊗Hn)⊕ . . .

Let Fn be the free monoid on n generators g1, . . . gn, with identity element g0. Given
α ∈ Fn, with α = gi1gi2 · · · gik , we define its length by |α| = k, and |g0| = 0. Analogously,
we can define an element of the Fock space eα = ei1 ⊗ ei2 ⊗ · · · ⊗ eik and ei0 = 1. Note
that B = {egi : gi ∈ Fn} is an orthonormal basis for the Fock space F 2. The Fock space
is isomorphic to the Hilbert space of square summable sequences indexed by Fn. The
Fock space can be also identified with H2(Fn), a canonical NC analogue of the Hardy
space. Given a collection of n NC variables (matrices or operators) z = [z1, . . . , zn], with
zα := zi1 · zi2 · · · zik , we can consider f ∈ F 2 and represent it as a formal power series:

f(z) =
∑

α∈Fn
f̂αz

α, converging for
∑

i ||ziz∗i || < 1. We define the NC Hardy space as:

H2(Fn) =

{∑
α∈Fn

f̂αz
α :

∑
α∈Fn

||fα||2 <∞

}
.

This means that we can choose between a “sequence” interpretation (F 2) or a “functional”
interpretation (H2(Fn)) of the results. We can now use sequences of operators to extend
the definition of a Hankel operator in a way meaningful for NC spaces (Popescu, 2003).

Definition 5 Let X = [X1, . . . , Xn], Xi ∈ B(Y) be an arbitrary sequence of bounded
operators on a Hilbert space Y, and let T = [T1, . . . , Tn], Ti ∈ B(H). Suppose H = H−⊕H+,
with H+ invariant with respect to each Ti ∈ B(H). Let P− be the orthogonal projection on
H−. A NC Hankel operator is a bounded linear operator Γ : Y → H− such that:

ΓXi = P−TiΓ for any i = 1, . . . , n. (4)

The definition of symbol provided in the commutative case can be generalized as follows. A
multiplier is a bounded linear operator A : Y → H such that AXi = TiA for i = 1, . . . , n.
Given a multiplier, it is always possible to associate with it a Hankel operator such that
||ΓA|| ≤ ||A||, and defined as ΓAy = P−Ay for y ∈ Y (Popescu, 2003).

We have the following noncommutative version of AAK theorem (Popescu, 2003).

Theorem 6 (NC AAK Theorem) Let X = [X1, . . . , Xn], Xi ∈ B(Y), and let T =
[T1, . . . , Tn], Ti ∈ B(H), be such that: ∥X1y1 + · · · + Xnyn∥2 ≥ ∥y1∥2 + · · · + ∥yn∥2 and
∥T1h1 + · · ·+ Tnhn∥2 ≤ ∥h1∥2 + · · ·+ ∥hn∥2 for yi ∈ Y and hi ∈ H. Let ΓA : Y → H− be a
NC Hankel operator, with ΓXi = P−TiΓ for any i = 1, . . . , n. Then there exists an optimal
approximation of Γ of size at most k.

We conclude this section with a quick overview of NC rational functions (Jury et al.,
2021a). A NC rational expression is any syntactically valid expressions involving several
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NC variables, scalars, +, ·, −1 and parentheses. A NC rational function is an equiva-
lence class between rational expressions, where we say that r1 and r2 belong to the same
equivalence class if r1 can be transformed into r2 by algebraic manipulations. Unlike the
commutative case, a NC rational function does not admit a canonical coprime fraction rep-
resentation (Kaliuzhnyi-Verbovetskyi and Vinnikov, 2009). A “canonical” way to represent
NC rational functions comes from the theory of formal languages (Fliess, 1974; Berstel,
1979; Schützenberger, 1961). In particular, every NC rational function containing 0 in its
domain admits a minimal realization of size n. If each Aj is a square matrix of size n, b,
c are vectors of size n and each complex variable zj is a square matrix of size m, we have:

r(z) = c∗ ⊗ 1m

(
1n ⊗ 1m −

∑
Aj ⊗ zj

)−1
b⊗ 1m = c∗

(
1−

∑
Ajzj

)−1
b. (5)

The last equality can be used as a more concise representation of the rational function.

3. A Framework for the Approximate Minimization Problem

Given a minimal WFA, we consider its Hankel matrix H, with rank n equal to the number of
states. We propose to reformulate the approximation problem as a low-rank approximation
of H. Thus, we can find a matrix of rank k < n, approximating H in the spectral norm,
and recover a WFA having k states using the spectral method (Balle et al., 2014). A well
known theorem by Eckart and Young (1936) states that the optimal approximation of H is
obtained by truncating its SVD, but the resulting matrix is not necessarily Hankel. This
is a problem, as we want to extract from the matrix a WFA. Leveraging AAK theory, it is
possible to find a Hankel matrix attaining the same bound as the optimal approximation.
In the next two sections, we show how to associate to H a Hankel operator and a symbol in
the case of one-letter and multi-letter alphabets. This is a necessary step in order to apply
Theorem 3, since its constructive proof relies on the definition of a symbol.

3.1. One-letter Alphabets

Let |Σ| = 1. Then, Σ∗ can be identified with N by associating to each string its length. Since
N can be embedded into Z, we can interpret f : Σ∗ → R as f : Z → R. This fundamental
step allows us to apply the Fourier isomorphism to reformulate the problem in the Hardy
space, where it can be solved using Theorem 3. This setting has been studied by Balle et al.
(2021) and Lacroce et al. (2021) in the context of WFAs and black-box models, respectively.

3.1.1. Defining a Hankel Operator and a symbol

Let A = ⟨α,A,β⟩ be a minimal WFA with n states over a one-letter alphabet, computing
fA : Σ∗ → R with Hankel matrix H. To apply AAK theory, we need to associate with H a
Hankel operator. We can define two different operators, Hf and Hϕ. On the one hand, we
can consider the Hankel operator acting over sequences Hf : ℓ2 → ℓ2, associated with the
function fA : Σ∗ → R with Hankel matrix defined by H(i, j) = fA(i+j), for i, j ≥ 0. On the
other hand, we can interpret H as the matrix Hϕ associated with a Hankel operator over
Hardy spaces, Hϕ : H2 → H2

−. Now, the operator and matrix are related (by definition)
to a complex function ϕ ∈ L2(T), the symbol. The entries of the matrix are defined by
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means of the Fourier coefficients of ϕ as H(j, k) = ϕ̂(−j− k− 1) for j, k ≥ 0. Note that the
function P−ϕ = ϕ̂(−j − k − 1) is a complex rational function (Kronecker, 1881).

We can derive the relationship between fA and ϕ: since we have H = Hf = Hϕ, the

two representations of the Hankel matrix need to coincide. We obtain: f(n) = ϕ̂(−n− 1).
Therefore, in the case of a WFA A = ⟨α,A,β⟩, we obtain the rational function:

P−ϕ =
∑
k≥0

f(k)z−k−1 =
∑
k≥0

α⊤Akβz−k−1 = α⊤(z1−A)−1β,

where the last equality holds if ρ(A) < 1. Now that we have the WFA’s symbol, we can
find the best approximation using the constructive proof of Theorem 3 (Balle et al., 2021).

3.2. Multi-letter Alphabets

In this section, we consider a WFA over Σ, with |Σ| = d > 1. In this case, Σ∗ can
be identified with Fd, the free monoid generated by d elements. Fd is not abelian, so
it cannot be embedded into Z, and we cannot directly apply Fourier analysis like in the
previous section. We first find a noncommutative version of Equation (2), and suitable
transformations to play the roles of the shifts. We then find an appropriate generalization
of the Hardy spaces. This allows us to define an equivalent of Definition 5 in the case of
Hankel matrices arising from a WFA. Finally, we associate the NC Hankel operator with a
NC rational function by leveraging a property of the multipliers.

3.2.1. Defining a Hankel Operator and a symbol

A WFA A over Σ, with |Σ| = d, computes a function f : Fd → R, with Hankel matrix H.
This function can be interpreted as an element in the Fock space F 2 (see Appendix B). We
consider the shift operators defined on the Fock space. For i = 1, . . . , d, the NC left shift
S = (S1, . . . , Sd) and NC right shift R = (R1, . . . , Rd) are defined by:

Si(eα) := ei ⊗ eα = eiα, Ri(eα) := eα ⊗ ei = eαi.

We can express the right shift in terms of the left one by using a unitary operator U , the
flipping operator : Ri = U∗SiU , where U(ei1 ⊗ ei2 ⊗ · · · ⊗ eik) = eik ⊗ · · · ⊗ ei2 ⊗ ei1 . We
obtain a NC version of Equation (1). A proof can be found in Appendix A.

Theorem 7 Let |Σ| = d, and let H be a WFA’s Hankel matrix. Let S and R be the NC
left and right shifts on F 2, S∗ and R∗ their adjoints. Then, the following equation holds:

HSi = R∗
iH for i = 1, . . . , d. (6)

To extend Definition 5, we need to find appropriate spaces Y, H−, and H = H−⊕H+. It has
become clear that the natural noncommutative generalization of ℓ2(N) is the Fock space,
and that the NC Hardy space generalizes the Hardy space, so we set Y = H+ = F 2 (or
Y = H+ = H2(Fd)). In the one-letter case, the role of H was played by L2(T) ∼= ℓ2(Z). A
function f ∈ L2(T) can be represented using the sequence of its Fourier coefficients, indexed
by powers of the complex variable z. Analogously, we can set H = F 2

0 ⊕F 2, and interpret it
as the set of infinite sequences that are indexed by negative and nonnegative powers of the
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NC variables z1, . . . zd (the F
2
0 and F 2 components, respectively). In Appendix B we present

an example of the application of this mathematical framework to a WFA over a 2-letter
alphabet. The following theorem (proof in Appendix A) shows that the formalization we
chose is not only suitable to describe the Hankel matrix of a WFA, but it also leads to an
appropriate definition of NC Hankel operator.

Theorem 8 Let S = (S1, . . . , Sd), R = (R1, . . . , Rd) be the left and right shifts on F 2,
S∗ and R∗ their adjoints. Let Y = F 2, H = F 2

0 ⊕ F 2, where F 2
0 =

⊕
k>0(Rd)⊗k. We set

H− = F 2
0 and H+ = F 2, and we define, for i = 1, . . . d, a bilateral shift on H:{

Ri(eα) = R∗
i (eα) for eα ∈ H−

Ri(eα) = Ri(eα) for eα ∈ H+

.

Let P− be the orthogonal projection on H−.
Then, the operator H : Y → H− defined by the following property:

HSi = P−RiH for any i = 1, . . . , n

is a NC Hankel operator according to Definition 5.

In the next theorem (proof in Appendix A), we show that the properties needed in Theo-
rem 6 hold in our setting, i.e. that NC AAK theory can be applied to the study of WFAs.

Theorem 9 Let H : Y → H−, with HSi = P−RiH, be the NC Hankel operator defined in
the previous theorem. Then:

(a) ∥S1y1 + · · ·+ Sdyd∥2 ≥ ∥y1∥2 + · · ·+ ∥yd∥2 for yi ∈ Y

(b) ∥R1h1 + · · ·+Rdhd∥2 ≤ ∥h1∥2 + · · ·+ ∥hd∥2 for hi ∈ H.

While the choice of the Fock space seems pretty natural, other spaces containing F 2 could
have played the role of H, such as the free group over d elements. We show in Appendix C
why this choice is not ideal in our setting.

As seen in Section 2.3, in the NC case a role similar to that of the symbol is played by an
operator, the multiplier. We want a functional representation of the multiplier depending
on the original Hankel matrix (like the symbol in the one-letter case). To achieve this,
we first analyze the multiplier and find that, with minimal manipulations, we can get a
functional description of it. Then, we show that this description is strictly related to the
original Hankel operator, and can be used to rewrite Equation (3) in the NC case.

We start by noting that, using the flipping operator, we can rewrite the property of
the multiplier as: UASa = SaUA. The operators commuting with the left shift are called
S-analytic operators, and can be represented using a function θ. An S-analytic operator G
has NC symbol θ if, for every v, GSav = Saθv (Popescu, 1993, 1995). Concretely, this means
that we can represent the operator UA in terms of its NC symbol θ, which corresponds to
the multiplication by the first column of the matrix of UA (this follows from Popescu (1993,
Theorem 1.6)). Moreover, it is easy to show that ∥UA∥ = ∥Uθ∥∞. Thus, if H is a NC
Hankel operator with multiplier A, and θ is the NC symbol of UA, we have:

∥UH∥ ≤ ∥UA∥ = ∥Uθ∥∞. (7)
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We refer to Uθ as the NC flipped symbol of H. Note that it can be written as Uθ = ϕ+c,
with ϕ ∈ H2

0 (Fd) and c ∈ H2(Fd). By construction, ϕ corresponds to the multiplication
by the first column of H. Note that if R is a bounded operator, ∥UH − R∥ = ∥H −
U∗R∥ and since UH is also a NC Hankel operator, it makes sense to search for its optimal
approximation. If we denote with UG the best approximation of UH, we have that G is
the best approximation of H. We have a NC generalization of Equation (3):

∥UH − UG∥ ≤ ∥UA− UB∥ ≤ ∥ϕ+ c− ψ − d∥∞. (8)

We conclude by deriving an expression for the NC flipped symbol associated to a WFA.
Let A = ⟨α, {Aa},β⟩ be a WFA computing a function f , let H be its Hankel matrix and
H the NC Hankel operator. The NC flipped symbol associated with H is defined using the
entries of the first column of H. Its series expression is:

P−(ϕ+ c) =
∑
a∈Fn

f(a)za =
∑
a∈Fn

α⊤Aaβzα = α⊤(1−
∑

Ajzj)
−1β.

Note that ϕ is a rational function: in the noncommutative case also, there is a tight con-
nection between WFAs and (NC) rational functions. This is very relevant, since in the
one-letter case rewriting Equation (3) in terms of the WFA’s parameters is the key step
to find the best approximation (Balle et al., 2021). At this stage, it is not clear if the
proof of Theorem 8 can be made constructive. Nonetheless, by obtaining a noncommuta-
tive counterpart of this equation, expressed using the parameters of a WFA, we have built
the machinery necessary to attack the problem in the case of multi-letter alphabets.

4. Conclusion

In this paper, we propose a way to associate a Hankel operator and a complex rational
function to the Hankel matrix of a given WFA. This allows us to highlight the connections
between approximate minimization and AAK theory. The application of AAK theory to
the approximate minimization problem in the one-letter setting has been studied by Balle
et al. (2021) and Lacroce et al. (2021) for WFAs and black boxes, respectively. To the best
of our knowledge, this is the first attempt to apply AAK theory to the multi-letter case.

The approximate minimization problem is an interesting alternative to extraction when
trying to approximate a black box (like RNNs) with a WFA. It allows to find the best
approximation of a given size, directly improving interpretability and reducing the compu-
tational cost. The results in this paper can be easily generalized to the black-box setting.

The framework we proposed is a key step towards solving the approximate minimization
problem, as it allows us to rephrase it in terms of noncommutative AAK theory, where we
know that a solution exists (Adamyan et al., 1971; Popescu, 2003). In the commutative
setting, this is enough to construct the optimal approximation of a given size. Unfortunately,
in the noncommutative setting AAK theorem is not constructive, so the problem of finding
the best approximation remains open. Recent progress in the field of noncommutative
multivariable operator theory (Jury et al., 2021b; Ball and Bolotnikov, 2021) leaves us
hopeful that this challenge can be addressed. We think that the problem of constructing
the optimal approximation is very relevant, as solving it would allow us to find a provable
algorithm for the approximate minimization problem of black boxes, and provide us with a
metric between different classes of models.
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Appendix A. Proofs

Proof [Theorem 7] For this proof, we leverage the functional representation of the Fock
space. We recall that in the NC Hardy space, the left shift is equivalent to left multiplication
by one of the noncommutative variables: Sif = zif . Moreover, the function f : Σ∗ → R
associated to the Hankel matrix can be represented by means of a formal power series in
the NC Hardy space f =

∑
α∈Σ∗ f(α)zα. This function corresponds to the first column of

the Hankel matrix. Analogously, it is easy to see that the column at index α is: Heα =∑
β∈Σ∗ f(βα)zβ. Therefore:

HSi(eα) =
∑
β∈Σ∗

f(βiα)zβ.

On the other hand, we can consider the adjoint of the right shift:

R∗
iHeα = R∗

i

∑
β∈Σ∗

f(βα)zβ =
∑

β′∈Σ∗

f(β′iα)zβ
′
.

Thus, for any i = 1, . . . , d, we have: HSi = R∗
iH, which concludes the proof. This shows

that the Hankel matrix arising from a WFA defined over a multi-letter alphabets satisfies
the NC version of the Hankel equation.

Proof [Theorem 8] In order to prove the theorem we need to verify that H− ⊂ H, and that
if H = H− ⊕H+, then H+ is invariant under each Ri. In particular, we want to show that
these properties are satisfied when Y = F 2, H− = F 2

0 and H = F 2
0 ⊕F 2. The first property

follows directly from the definition of H: F 2
0 ⊂ F 2

0 ⊕ F 2. As for the second property, we
note that H− = F 2

0 , it follows by definition that H+ = F 2.
We want to show that: R1H+ + . . . RdH+ ⊆ H+, i.e. that for any hi ∈ H+ we have

R1h1+. . . Rdhd ∈ H+. SinceRi(eα) = Ri(eα) for eα ∈ F 2, the condition can be reformulated
as: Ri(eα1) + . . . Rd(eαn) ∈ F 2, which holds by definition of R, since Ri(eα) = eαi ∈ F 2 for
any α, and the linear combination of elements in F 2 is an element in F 2.

Proof [Theorem 9]
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(a) Leveraging the fact that the shifts have pairwise orthogonal ranges, so S∗
i Sj = 1δi,j ,

and that each Si is an isometry, we obtain:

∥S1y1 + · · ·+ Sdyd∥2 = ⟨S1y1, S1y1⟩+ ⟨S1y1, S2y2⟩+ · · ·+ ⟨Sdyd, Sdyd⟩
= ⟨S1y1, S1y1⟩+ ⟨S2y2, S2y2⟩+ · · ·+ ⟨Snyn, Snyn⟩
= ∥y1∥2 + · · ·+ ∥y2∥2.

(b) The shifts have orthogonal ranges, so the result holds with the equality.

Appendix B. Example

Example 1 Let Σ = {a, b}, ε the empty string. Σ∗ corresponds to the free monoid generated
by two elements F2, where the generators are g1 = a and g2 = b. A word α = aba can be
seen as an element in F2, with α = aba = g1g2g1, and the corresponding element in the Fock
space F 2 is eα = e1 ⊗ e2 ⊗ e1. A function f : Σ∗ → R can be viewed either as an element
in the Fock space F 2, using a sequence interpretation:

(f(ε), f(a), f(b), f(aa), f(ab), f(ba), f(bb), f(aaa), . . . ) ∈ F 2 =
⊕
k≥0

(R2)⊗k,

or as a power series in the NC Hardy space H2(F2), using a functional interpretation:

f(ε) + f(a)z1 + f(b)z2 + f(aa)z21 + f(ab)z1z2 + f(ba)z2z1 + · · · =
∑
α∈Σ∗

f(α)zα.

As we can see, we obtain a bi-infinite sequence, indexed by the powers of the NC variables:

(. . . , f(a−2), f(b−1), f(a−1), f(ε), f(a), f(b), f(aa), f(ab), . . . )

. . . z−2
1 z−1

2 z−1
1 z01z

0
2 z11 z12 z21 z11z

1
2 . . .

Now, we can consider the right shift S = (S1, S2), with: S1(eα) = eaα and S2(eα) = ebα.
The adjoint of S is defined as: S∗

1(eα) = eα′ if α = aα′, zero otherwise. The right shift and
its adjoint can be defined in a similar way.

Let A = ⟨α, {Aa},β⟩ be a WFA computing a function f , with Hankel matrix H.

H =


f(ε) f(a) . . . f(ba) . . . f(aba) . . .
f(a) f(aa) . . . f(aba) . . . f(aaba) . . .
f(b) f(ba) . . . f(bba) . . . f(baba) . . .
f(aa) f(aaa) . . . f(aaba) . . . f(aaaba) . . .
. . . . . . . . . . . . . . . . . . . . .

 .

It is easy to see that:

HSa(eba) = Heaba =
∑
β∈Σ∗

f(βaba)zβ = f(aba)z0 + f(aaba)z1 + f(baba)z2 + . . .
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On the other hand, if we consider the adjoint of the right shift, we have:

R∗
aH(eba) = R∗

a

∑
β∈Σ∗

f(βba)zβ =
∑

β′∈Σ∗

f(β′aba)zβ
′
= f(aba)z0 + f(aaba)z1 + . . . .

We can obtain the same results for Sb and R∗
b , so we can see that the Hankel equation holds.

Appendix C. The Free Group

We denote with F∗
d the free group on d elements, and with ℓ(F∗

d) the set of sequences indexed
by elements in the free group. We can now show that, by setting H = ℓ(F∗

d), the conditions
of Theorem 8 are satisfied, but the ones of Theorem 9 are not. It is easy to see that H− ⊂ H,
H+ is invariant under the bilateral shift, and that property (a) of Theorem 9 is satisfied.
On the other hand, property (b) does not hold anymore. The components of the bilateral
shifts don’t have orthogonal ranges, as R

∗
iRj ∈ H even when i ̸= j. Intuitively the space

is “too big” for property (b) to hold. If we consider the intuition provided earlier about
indexing the elements of H = F 2

0 ⊕ F 2 using negative and nonnegative exponents, we have
that in the case of the free group any combination of positive and negative exponents is
allowed. Therefore, when defined on ℓ(F∗

d), the adjoint of the shift is:

R
∗
i (eα) =

{
eα′ if α = α′i

eαi−1 otherwise.

Our objective is to be able to apply Theorem 6, to conclude that it is possible to find a
optimal approximation of the NC Hankel operator associated to a WFA. For this to happen,
we need Theorem 9 to hold. Thus, the free group is not a viable option in our setting.
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