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Abstract

In this thesis, we leverage classical results from the theory of Hankel operators to tackle

the approximate minimization problem and its applications to language modelling. In this

context, we apply our analysis to weighted finite automata (WFAs) as well as black-box

models on sequential data. Given one of these models, we are concerned with finding an

approximately minimal realization of the language that it is computing. In particular, we

want to construct a weighted finite automaton that fits within a given size constraint and

mimics the behaviour of the original model while minimizing the approximation error. We

reformulate the problem in terms of low-rank approximation of infinite Hankel matrices and

apply Adamyan-Arov-Krein (AAK) approximation theory to solve it.

We first solve the optimal spectral-norm approximate minimization problem for irredun-

dant WFAs over a one-letter alphabet. We present a theoretical analysis based on AAK

theory, and provide a closed-form solution, and an algorithm, to compute the optimal ap-

proximation of a given size in polynomial time. We then extend these results to black boxes

trained for language modelling. We study the conditions under which AAK theory can be

applied to find the optimal approximation of a black-box model, without accessing the train-

ing data. Moreover, we prove that the proposed method returns an asymptotically-optimal

approximation and allows us to use the spectral norm to measure the distance between the

black box and the WFA. Finally, we present a framework to apply noncommutative mul-

tivariable operator theory to the study of models defined over multi-letter alphabets. We

highlight the main obstacles towards a generalization of AAK methods to the multi-letter

setting and we conclude by providing possible directions for future work.
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Abrégé

Dans cette thèse, nous nous appuyons sur des résultats classiques de la théorie des

opérateurs de Hankel pour étudier le problème de la minimisation approximative et ses

applications à la modélisation du langage. Dans ce contexte, nous appliquons notre analyse

aux automates finis pondérés (WFA) ainsi qu’aux modèles de bôıtes noires entrainés sur

des données séquentielles. Étant donné un de ces modèles, nous cherchons à obtenir une

réalisation approximativement minimale du langage qu’il reconnait. Plus précisément, nous

voulons construire un automate fini pondéré qui respecte une contrainte de taille donnée

et imite le comportement du modèle original tout en minimisant l’erreur d’approximation.

Nous reformulons le problème en termes d’approximation à faible rang de matrices de Han-

kel infinies et appliquons la théorie d’approximation d’Adamyan-Arov-Krein (AAK) pour le

résoudre.

Nous résolvons tout d’abord optimalement le problème de minimisation approximative

dans la norme spectrale pour les WFA non-redondants sur un alphabet d’une lettre. Nous

présentons une analyse théorique basée sur la théorie AAK, et fournissons une solution an-

alytique, ainsi qu’un algorithme, pour calculer l’approximation optimale d’une taille donnée

en temps polynomial. Nous étendons ensuite ces résultats aux bôıtes noires entrâınées pour

la modélisation du langage. Nous étudions les conditions sous lesquelles la théorie AAK

peut être appliquée pour trouver l’approximation optimale d’un modèle de bôıte noire, sans

accéder aux données d’entrâınement. De plus, nous prouvons que la méthode proposée

fournit une approximation asymptotiquement optimale et nous permet d’utiliser la norme

spectrale pour mesurer la distance entre la bôıte noire et le WFA. Enfin, nous présentons

un cadre permettant d’appliquer la théorie des opérateurs multivariables non-commutatifs

à l’étude de modèles définis sur des alphabets multi-lettres. Nous soulignons les principaux

obstacles à la généralisation des méthodes AAK au cadre multi-lettres et nous concluons en

proposant des directions possibles pour les travaux futurs.
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Contribution to Original Knowledge

This thesis contributes to the understanding of the approximate minimization problem

in language modelling. To the best of our knowledge, this thesis represents the first attempt

to apply the AAK theory to solve the approximate minimization problem of WFAs and

black-box models trained for language modelling on sequential data.

Specifically, we make the following contributions.

• A framework to reformulate the approximate minimization problem of models over

one-letter or multi-letter alphabets in terms of functional analysis and noncommutative

multivariable operator theory, respectively. In both cases, we suggest a way to link

the Hankel matrix of a WFA to a Hankel operator and to a complex rational function

[LPR22].

• An application of the AAK theory to study the approximate minimization problem of

WFAs over a one-letter alphabet [BLP+21].

– We present a theoretical analysis of the optimal spectral-norm approximate min-

imization problem for WFAs, based on their connection with finite-rank infinite

Hankel matrices. We provide a closed form solution for real weighted automata

A = 〈α,A,β〉 over a one-letter alphabet, under the assumption ρ(A) < 1 on the

spectral radius.

– We propose a self-contained algorithm that returns the unique optimal spectral-

norm approximation of a given size in polynomial time.

– We bound the approximation error, both in terms of the Hankel matrix (spectral

norm) and of the rational function computed by the WFA (`2 norm).

• An application of the AAK theory to study the approximate minimization problem of

black boxes trained computing a function with bounded `1 norm [LPR21].
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– We propose an algorithm that, given a black-box model M trained for language

modelling on a one-letter alphabet and a target size k, returns a WFA with k

states corresponding to an asymptotically-optimal spectral approximation of M.

We do not assume any knowledge of the internal structure of the black box, nor

of the training data.

– We use tools from signal processing and arguments from random matrix theory

to provide an asymptotic analysis of the approximation problem in the case of

infinite-rank infinite Hankel matrices.

– We propose a new way to compute the distance between a black box and the

extracted WFA, based on the AAK theory. We provide bounds on the approxi-

mation error in terms of spectral and `2 norm, and strategies to improve precision

when the rank is infinite.

• We lay out possible approaches that can be used to try to address the question of

whether or not the proof of the noncommutative AAK theorem can be made construc-

tive.
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Contribution of Authors

• Chapters 1, 7, 8, 9 were written by the author specifically for this thesis.

• Chapter 2 and the Appendix present the technical background of this thesis, and were

written by the author. Part of this content was already presented in the background

section and Appendix of the paper [BLP+21].

• Chapter 3 and 6 were written by the author specifically for this thesis. Part of the

content was included in the paper “Towards an AAK Theory Approach to Approximate

Minimization in the Multi-Letter Case” [LPR22] that was presented at Learnaut 2022

(the 4th edition of the workshop Learning and Automata).

• Chapter 4 is based on the paper “Optimal Spectral-Norm Approximate Minimization

of Weighted Finite Automata” [BLP+21] that was published at ICALP 2021 (the 48th

International Colloquium on Automata, Languages, and Programming). The authors

are listed in alphabetical order. The author of this thesis led the project, wrote the

paper and leveraged the existing literature in control theory to come up with the the-

oretical solution proposed. In particular, the construction of the WFA E is based on

the all-pass system from the theory of dynamical systems, and the use of the Bartels-

Stewart algorithm was proposed by Glover in his solution of the analogous continuous

problem [Glo84, CC97, Gu05, Ant05]. Borja Balle had the original idea of applying

AAK theory to the approximate minimization problem of WFAs, and gave detailed

feedback on the written paper. Guillaume Rabusseau reviewed all the proofs, and pro-

vided comments on all the mathematical details. Prakash Panangaden helped with the

theoretical study and understanding of the problem, and provided technical direction

and supervision of the paper. Doina Precup funded the research and provided feedback

on the results.
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• Chapter 5 is based on the paper “Extracting Weighted Automata for Approximate

Minimization in Language Modelling” [LPR21] that was published at ICGI 2020/2021

(the 15th International Conference on Grammatical Inference). The authors are listed

in alphabetical order. The author of this thesis led the project, formulated the problem,

came up with the solution and wrote the paper. Prakash Panangaden helped with

the theoretical understanding of the problem and provided technical direction and

supervision of the paper. Guillaume Rabusseau reviewed the mathematical details, in

particular the noise analysis and the formulation of the problem.
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Chapter 1

Introduction

In the rapidly evolving, performance-oriented field of deep learning, lack of interpretability

and high computational costs remain two of the biggest obstacles towards safer and more

accessible models [DVK17]. For machine learning systems to be used safely, it is of paramount

importance to improve their interpretability. However, neural networks are often black boxes

that, while trustworthy, might fail without giving any insight on why that happened [EA20].

On the other hand, the performance of deep learning models has been more and more

dependent on increasing computational resources. This rapid escalation in the computational

requirements is becoming economically and environmentally unsustainable [TGLM20]. The

need to address these issues is at the root of the increasing number of works focusing on

knowledge distillation [HVD15, EA20], and on approximating neural networks with other

kinds of models, that are easier to interpret.

We are particularly interested in models learning functions defined over sequences of ob-

servations. Sequential data is ubiquitous, and is at the basis of many tasks, from natural

language processing to reinforcement learning and computational biology. With this class

of data, particular attention has been given to the problem of extracting, from a Recur-

rent Neural Network (RNN) [Elm90, HS97] a weighted finite automaton (WFA) [AEG18,

RLP19, WGY19, OWSH20, EA20, SRRS21, ZDX+21]. Weighted finite automata are an

1
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expressive and efficient class of models that are suited for sequence modelling and predic-

tion [DE08, CHM04]. In particular, they can compute any probability distribution defined

by a Hidden Markov Model [DE08], and can model the transition and observation behavior

of partially observable Markov decision processes [TJ15]. They are also connected to other

reinforcement learning frameworks, such as predictive state representations [LSS01, TJ15],

and encompass probabilistic automata of various kinds. The advantage of employing WFAs

over neural networks is that they are generally easier to interpret, thanks to their graphical

representation [HVLS16], and they are faster to compute. In the literature, automata have

already been applied in several ways, to improve the understanding, interpretability, and

verification of RNNs. For example, Dong et al. [DWS+20] propose a way to analyze a RNN

using a probabilistic finite automaton extracted from it, based on the symbolic encoding of

RNN hidden state vectors. While weighted automata provide more expressiveness, simpler

models like deterministic finite automata have been successfully used in the context of formal

verification. In Klep et al. [KNR+21] the authors use active learning to learn a deterministic

finite automaton from a given RNN, and use model checking for verification. Deterministic

finite automata are applied to the verification problem also by Wang et al. [WZLG18], in the

context of adversarial perturbations. Ma et al. [MDL+22] propose an adversarial sequence

generation approach for RNNs using symbolic weighted finite automata, an extension of

WFAs that can handle strings over infinite alphabets more efficiently [SHYS21].

It is important to remark that there are situations in which even a WFA might become

too expensive to compute, or too difficult to interpret, and therefore needs to be approxi-

mated using a smaller weighted automaton. This generally occurs when the WFA is already

minimal but still has too many states, or when we are required to test for a given property

multiple times. If we are willing to trade off some of the accuracy for a faster processing

time, a possible approach is to use approximate minimization techniques. The approximate

minimization problem is concerned with finding an “approximately” minimal approximation

of a given model. In the case of automata, given a minimal WFA, the objective is to find
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a smaller automaton that mimics its behaviour [BPP19]. The two WFAs compute different

functions, so the process produces an approximation error. This can be assessed in sev-

eral ways: the norm that we choose to measure the error impacts greatly the minimization

process.

The approximate minimization problem is related to knowledge distillation and extrac-

tion tasks. When the solution of the problem is optimal, this approach has a clear advantage

compared to the other methods: it allows us to search for the best WFA among those of

a predefined size. This can be particularly useful when dealing with limited computing

resources. Moreover, bounding the number of states of a WFA can help improve the inter-

pretability of its graphical representation [HVLS16]. Thus, we can choose the size according

to predefined computational or interpretability constraints, and then search for the best ap-

proximation of that size. Another advantage of approximate minimization is that it allows

for a broader theoretical analysis of the problem. For example, most results in the extrac-

tion literature are obtained under the assumption that the RNN is trained over a regular

language (an exception can be found in the work of Okudono et al. [OWSH20] and Eyraud

and Ayache [EA20]). The experiments performed by Eyraud and Ayache suggest that, even

when the RNN is trained on data not corresponding to a WFA, it seems to be computing

approximations of rational series [EA20]. Nonetheless, the regular-language setting remains

a strong assumption to make without theoretical guarantees of convergence. Tackling this

problem using approximate minimization can provide an avenue to investigate “asymptotic”

characterizations of the problem. We remark that approximate minimization can be conve-

nient also in the context of spectral learning algorithms [BDR09, BCLQ14, BHP14, HKZ12].

When applied to a learning task, such algorithms start by computing a minimal WFA that

explains the training data exactly. Then, they obtain a model that generalizes to unseen

data by producing a smaller approximation to the minimal WFA. The size reduction is a

crucial step: the exact machine might overfit the data and generalize poorly. In this context,

approximate minimization can be particularly useful when the learning algorithm is asked
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to produce a WFA smaller than the one that is generating the data.

1.1 Rationale and Objectives

The approximate minimization problem for weighted finite automata was first formalized

by Balle et al. [BPP19]. In their paper, the authors provide an algorithm that, given a

first WFA, computes a new WFA that is approximately minimal, and obtain bounds in the

`2 norm. The authors conclude the paper highlighting the following interesting research

question:

Q1: Given a bound on the size, can we construct the best possible approximation to a WFA?

Our first objective is to answer this question, and in this sense, the paper of Balle et al. can

be considered as the starting point for this thesis. We then broaden the class of models we

consider, and address the following point:

Q2: Given a bound on the size, can we construct the best possible approximation to a black-

box model computing a function with bounded `1 norm?

We remark that black box models trained for language modelling are computing functions

belonging to this class. The choice of these kind of models, which encompasses RNNs,

is in line with the literature of WFA extraction from neural networks. We believe that

answering this question is relevant to the field. Indeed, all the methods proposed in the

literature provide approximations that are qualitatively good, but hard to compare, and

lack theoretical guarantees.

In the case of one-letter alphabets, both questions can be reformulated and solved in

terms of functional analysis. In particular, a collection of results on the theory of Hankel

operators called the Adamyan-Arov-Krein (AAK) theory can be applied. This set of results

has been widely exploited in control theory, in the context of model reduction of linear time-

invariant dynamical systems [Glo84]. AAK theory provides us with a way to compute the
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optimal low-rank approximation in the spectral norm of the Hankel matrix of a (compact)

Hankel operator. Mathematically, these two questions correspond to finding the optimal low-

rank approximation in the spectral norm of the finite-rank and infinite-rank infinite Hankel

matrices associated with a WFA and a black-box model, respectively.

We evaluate the quality of the approximation in the spectral norm. The first reason

why we choose this norm is because of its link with the AAK theory, which allows us to

find a global minimum for the approximation error. At the same time, the spectral norm

enjoys other interesting properties. For example, it can be computed precisely, and it can

be minimized efficiently (in polynomial time). Moreover, it can be used to compare different

classes of models, since it is defined on the Hankel matrix and not on the specific architecture

considered. For example, it allows to define and to precisely compute the distance between a

WFA and a black-box model. Therefore, solving the approximate minimization problem with

respect to the spectral norm can help to quantitatively analyze different approximations.

Since the correspondence between the approximate minimization problem and the prob-

lem solved by AAK theory is direct only in the one-letter case, the last question that we try

to answer is:

Q3: Can we generalize these results to multi-letter alphabets?

Addressing this question is central for future applications of this work. The main challenge

arises from the fact that the mathematical theory necessary to study the case of multi-letter

alphabets is noncommutative. In this setting, the few existing results related to AAK theory

are obtained using non-constructive arguments.

1.2 Overview of the Results

In this thesis, we study the approximate minimization problem, with a particular emphasis

on the task of language modelling. We focus our attention first on weighted finite automata,

and second on black-box models computing a function with bounded `1 norm. We reformu-
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late the approximation problem as a rank minimization problem for Hankel matrices and

choose to measure the error in terms of the spectral norm. Our main objective is to obtain

a framework to apply tools from AAK theory to the approximation problem, in order to an-

swer the research questions stated before. We divide the problem into two cases, depending

on whether the model is computing a function over a one-letter or a multi-letter alphabet.

In the first case, the advantage of choosing the spectral norm becomes clear. The AAK

theory tells us how to compute the optimal approximation of a given size, and the corre-

sponding approximation error. We propose a method, based on Fourier analysis, to adapt

the formalism of AAK theory to the setting of WFAs and black boxes over one-letter alpha-

bets. For both classes of models, we provide theoretical guarantees and an algorithm that

returns the optimal approximation of a given size in the spectral norm. In the multi-letter

setting, the situation is more complicated, as it requires a noncommutative version of AAK

theory. We provide a novel framework for the application of noncommutative multivariable

operator theory to the setting of WFAs and black-box models. Moreover, we propose a way

to associate a noncommutative rational function to a given WFA. Unfortunately, the proof

of the noncommutative version of the AAK theorem is not constructive, so it is not possible

to easily obtain an algorithm from it. We illustrate possible approaches and obstacles that

need to be overcome in order to extract an algorithm from the theorem.

1.3 Outline of the Thesis

This thesis is organized as follows. In Chapter 2, we set the notation and we present the nec-

essary background notions used throughout the thesis: weighted finite automata, language

modelling and AAK theory. The main contributions of this thesis are detailed in chapters

3, 4, 5, 6 and 7. Chapter 3 is concerned with the methodological core of this thesis. After

a brief analysis of the salient properties of the spectral norm, we introduce the approximate

minimization problem in the broader context of low-rank approximation of infinite Hankel
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matrices. We illustrate the high-level approach to solve the problem in the case of one-letter

alphabets, where AAK theory can be directly applied. In Chapter 4, we address question

Q1 in the case of one-letter alphabets. In particular, we analyze and solve the approximate

minimization problem for irredundant weighted finite automata with weights in R defined

over a one-letter alphabet. Following the method illustrated in Chapter 3, we adapt AAK

theory to this setting, and we provide theoretical guarantees, an algorithm for optimal ap-

proximation, and bounds on the quality of the approximation in the spectral and `2 norms.

In Chapter 5, we study the approximate minimization problem for black boxes computing

a function f ∈ `1 over one-letter alphabets, thus addressing part of question Q2. We show

that the task of language modelling is encompassed in this setting. We provide an algorithm

that returns a weighted finite automaton that fits within a given size constraint and which

mimics the behaviour of the original model while minimizing the spectral norm. In partic-

ular, we show that minimizing the approximation error between a WFA and a black-box

model can be solved optimally in a tractable way. We provide theoretical guarantees and an

asymptotic analysis to study the potentially infinite-rank infinite Hankel matrix of the black

box, without accessing the training data. In Chapter 6 and Chapter 7 we take on question

Q3 and focus on the approximate minimization problem in the case of multi-letter alpha-

bets. In Chapter 6 we review fundamental results from noncommutative functions theory

and introduce a new framework to study the problem in this setting. We propose a way

to associate a noncommutative Hankel operator and a noncommutative rational function to

a given model. In Chapter 7 we overview several ways to approach the problem of finding

an optimal solution in this setting, and highlight where they fall short. In Chapter 8 we

present a detailed review of the literature concerned with the approximate minimization

problem. In particular, we present a summary of the growing line of work in WFA extrac-

tion from RNNs. The approximate minimization problem is tightly related to the task of

model reduction of linear time-invariant dynamical systems, as the impulse-response of a

discrete time-invariant Single-Input-Single-Output SISO system can be parametrized using
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a WFA. Specifically, the line of work on “Hankel-norm approximation” is the closest to our

setting, and employs methods from AAK theory. Thus, we provide a literature review of

relevant methods studied by the control theory and signal processing communities. Finally,

in Chapter 9 we summarize our contributions and detail limitations and possible directions

for future work.



Chapter 2

Technical Background

In this chapter, we recall the fundamental definitions and preliminary results that are used

throughout the thesis.

2.1 Notation

We denote with N, Z and R the sets of natural numbers, integers and real numbers, respec-

tively. We use bold letters for vectors and matrices; all vectors considered are column vectors

unless otherwise specified. We denote with 1 the identity matrix, specifying its dimension

only when it is not clear from the context. We denote with v(i), M(i, :) and M(:, j) the i-th

component of the vector v, and the i-th row and j-th column of the matrix M, respectively.

Given two matrices M ∈ Rd1×d2 , N ∈ Rd′1×d′2 we denote their Kronecker product by M⊗N ∈

Rd1d′1×d2d′2 with entries given by (M⊗N)((i− 1)d′1 + i′, (j − 1)d′2 + j′) = M(i, j)N(i′, j′).

Given a matrix M ∈ Rp×q of rank n, a rank factorization is a factorization M = PQ,

where P ∈ Rp×n, Q ∈ Rn×q and rank(P) = rank(Q) = n. Let M ∈ Rp×q of rank n, the

singular value decomposition SVD of M is the factorization M = UDV>, where U ∈ Rp×n,

D ∈ Rn×n, V ∈ Rq×n are such that U>U = V>V = 1, and D is a diagonal matrix

with entries σ0 ≥ · · · ≥ σn−1 > 0. If the previous inequalities are strict, the SVD is

unique. The columns of U and V are called left and right singular vectors, while the entries

9
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σ0 ≥ · · · ≥ σn−1 > 0 of D are the singular values. The Moore-Penrose pseudo-inverse M+

of M is the unique matrix such that MM+M = M, M+MM+ = M+, with M+M and

MM+ Hermitian. We remark that the pseudo-inverse can be computed using the SVD of

M: M+ = VD−1U>. The Choleski decomposition is the factorization of a Hermitian matrix

into the product of a lower triangular matrix and its conjugate transpose. The spectral radius

ρ(M) of a matrix M is the largest modulus among its eigenvalues.

A Hilbert space is a complete normed vector space where the norm arises from an inner

product. We denote with `p := `p(N) the standard sequence space. Let `2(Σ∗) be the Hilbert

space of square-summable sequences over Σ∗, with norm defined as ‖f‖2
2 =

∑
x∈Σ∗ |f(x)|2,

and inner product 〈f, g〉 =
∑

x∈Σ∗ f(x)g(x) for f, g ∈ RΣ∗ . Let T = {z ∈ C : |z| = 1} be the

complex unit circle, D = {z ∈ C : |z| < 1} the (open) complex unit disc. Let 1 < p < ∞,

Lp(T) be the space of measurable functions on T for which the p-th power of the absolute

value is Lebesgue integrable. For p = ∞, we denote with L∞(T) the space of measurable

functions that are bounded, with norm ‖f‖∞ = sup{|f(x)| : x ∈ T}.

2.2 Weighted Finite Automata

In this section, we provide an overview of weighted finite automata. For a more detailed

presentation we refer the reader to [BR11, Ber79, Moh09, Fli74]. We remark that weighted

automata can be defined over arbitrary semi-rings. In this thesis we focus only on automata

with real weights and the usual addition and multiplication operations. Anytime we mention

WFAs, we imply that they have real weights. We follow the notation of Balle, Panangaden

and Precup [BPP15], and use a linear-algebraic representation.

Let Σ be a fixed finite alphabet, Σ∗ the set of all finite strings with symbols in Σ. We

use ε to denote the empty string. Given two letters p, s ∈ Σ, we denote with ps their

concatenation (this operation directly extends to words in Σ∗).

Definition 2.2.1. A weighted finite automaton (WFA) of dimension n over Σ is a tuple
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q01 q1 1

a, 1
b, 1

a, 1
b, 0

a, 1
b, 1

a, 0
b, 0

α =

[
1
0

]
Aa =

[
1 1
0 1

]
β =

[
0
1

]
Ab =

[
1 0
0 1

]
fA = α>Axβ

Figure 2.1: Weighted automaton with two states q0 and q1. The initial weights are denoted
using arrows pointing to each state, the final weights are point out and the transition weights
are given by arrows between states. In particular, this automaton count the number of
occurrences of the letter a in a string. On the right side of the figure we can see the
corresponding initial vector α, final vector β, and transition matrices Aa and Ab.

A = 〈α, {Aa}a∈Σ,β〉, where:

• α ∈ Rn is the vector of initial weights,

• Aa ∈ Rn×n is the matrix defined for each symbol a and containing the transition weights

associated with it,

• β ∈ Rn is the vector of final weights.

Every WFA A computes a function fA : Σ∗ → R, i.e. given a string x = x1 · · ·xt ∈ Σ∗,

it returns fA(x) = α>Ax1 · · ·Axtβ = α>Axβ. An example of weighted automaton in its

linear-algebraic representation is given in Figure 2.1.

Definition 2.2.2. A function f : Σ∗ → R is called rational if there exists a WFA A

that computes it, i.e. such that f = fA, where fA(x) = α>Ax1 · · ·Axtβ = α>Axβ, with

x = x1 · · ·xt ∈ Σ∗. The rank of f is the dimension of the smallest WFA realizing f .

We can consider different classes of automata, computing different kind of functions.

Definition 2.2.3. We say that a WFA A = 〈α, {Aa}a∈Σ,β〉 is a generative probabilistic

automaton (GPA) if fA(x) ≥ 0 for every x, and
∑

x∈Σ∗ fA(x) = 1, i.e. if fA computes a

probability distribution over Σ∗.
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In general, this class of automata can contain pathological examples with states not

connected to any final state. To avoid these cases, we introduce the following property on

the spectral radius of the transition matrix.

Definition 2.2.4. Given a WFA A = 〈α, {Aa}a∈Σ,β〉, let A =
∑

a∈Σ Aa. The WFA A is

irredundant if ρ(A) < 1.

Given a function f : Σ∗ → R, we can consider a bi-infinite matrix Hf ∈ RΣ∗×Σ∗ having

rows and columns indexed by strings and defined by Hf (p, s) = f(ps) for p, s ∈ Σ∗.

Definition 2.2.5. A (bi-infinite) matrix H ∈ RΣ∗×Σ∗ is Hankel if, for all p, p′, s, s′ ∈ Σ∗

such that ps = p′s′, we have H(p, s) = H(p′, s′).

We remark that, given a Hankel matrix H ∈ RΣ∗×Σ∗ , there exists a unique function

f : Σ∗ → R such that Hf = H.

The following theorem characterizes all Hankel matrices of finite rank.

Theorem 2.2.1 ([CP71, Fli74]). A function f : Σ∗ → R can be computed by a WFA if and

only if the Hankel matrix Hf has finite rank n. In that case, n is the minimal number of

states of any WFA A computing f .

Given a WFA A = 〈α, {Aa}a∈Σ,β〉 realizing a rational function f , it is possible to define

the forward and backward matrices associated with its Hankel matrix Hf .

Definition 2.2.6. The forward matrix of A is the infinite matrix FA ∈ RΣ∗×n with entries

given by FA(p, :) = α>Ap for any p ∈ Σ∗, while the backward matrix of A is BA ∈ RΣ∗×n

given by BA(s, :) = (Asβ)> for any s ∈ Σ∗.

Let Hf be the Hankel matrix of f , its forward-backward FB factorization is: Hf = FB>.

The forward and backward matrices are related to two important properties of an automaton.

Definition 2.2.7. A WFA with n states is reachable if rank(FA) = n, while it is observ-

able if rank(BA) = n. A WFA is minimal if it is reachable and observable.
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We remark that, if the WFA A is minimal, the FB factorization is a rank factoriza-

tion [BCLQ14].

2.2.1 Singular Value Automaton

We recall the definition of the singular value automaton [BPP15, BPP19], a canonical form

for WFAs.

Definition 2.2.8. Let f be a rational function and suppose Hf admits a SVD, Hf = UDV>.

A singular value automaton (SVA) for f is the minimal WFA A realizing f such that

FA = UD1/2 and BA = VD1/2.

Suppose that F is such that the inner products of its columns

〈F(:, i),F(:, j)〉 =
∑
x∈Σ∗

F(x, i)F(x, j) (2.1)

are finite for any i, j = 1, . . . , n. Then the positive semi-definite matrix P = F>F is well

defined. The SVA can be computed with an efficient algorithm relying on the following

matrices [BPP19].

Definition 2.2.9. Let f be a rational function, Hf = FB> a FB factorization. If the

matrices P = F>F and Q = B>B are well defined, we call P the reachability Gramian

and Q the observability Gramian.

The Gramians can alternatively be characterized (and computed [BPP19]) using fixed

point equations, corresponding to Lyapunov equations when |Σ| = 1 [Lya50].

Theorem 2.2.2. Let A = 〈α, {Aa}a∈Σ,β〉 be a WFA with n states and well-defined Grami-
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ans P, Q. Then X = P and Y = Q solve the following equations:

X −
∑
a∈Σ

AaXA>a = ββ> (2.2)

Y −
∑
a∈Σ

A>aXAa = αα>. (2.3)

In particular, for |Σ| = 1, the Gramians of A = 〈α,A,β〉 are the solutions of:

X −AXA> = ββ> (2.4)

Y −A>YA = αα>. (2.5)

We recall an important property relating the Gramian matrices of a WFA to the singular

values of its Hankel matrix.

Lemma 2.2.3. Let A be a minimal WFA with n states realizing a rational function f ∈ `2

with reachability and observability Gramians P, Q. Suppose P = Q = D, where D is a

diagonal matrix having ordered entries σ0 ≥ σ1 ≥ . . . σn−1 ≥ 0. Then A is a singular value

automaton, and D is the matrix of singular values of the Hankel matrix Hf .

We remark that, thanks to this result, we are able to precisely compute the singular values

of the Hankel matrix associated to a WFA, despite the fact that this matrix is infinite.

Finally, we can use the Gramians to derive an expression and compute in polynomial

time the SVA of a minimal WFA A [BPP19].

Theorem 2.2.4. Let A be a minimal WFA with n states realizing a rational function f ∈ `2

with reachability and observability Gramians P, Q. Let Q = LQL>Q and P = LPL>P be their

Cholesky decomposition. Suppose L>PLQ has singular value decomposition UDV>. Then the

WFA AS = 〈S>α,S−1AaS,S
−1β〉 with S = L−>P UD1/2 is a SVA for A.

We consider the following example of WFA represented in its SVA form.
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Example 2.2.5. Let A = 〈α, {Aa},β〉 be a weighted finite automaton over a one-letter

alphabet Σ = {a}, with:

A =


0 1 1

0 0 1

0 0 0

 , α =


1

1

0

 , β =


1

1

1,


and with Gramians:

P =


1 1 0

1 2 2

0 2 5

 , Q =


6 3 1

3 2 1

1 1 1

 .

Its SVA form is:

A =


0.579 0.461 0.046

−0.461 −0.192 0.225

0.046 −0.225 −0.387

 , α =


1.650

−0.851

0.038

 , β =


1.650

0.851

0.038

 ,

with Gramians:

P = Q =


4.67 0 0

0 1.79 0

0 0 0.12

 .

The SVA form of a WFA is unique up to the same set of conditions for which the singular

value decomposition is unique. Therefore, the use of the SVA form allows us to obtain results

and approximation bounds that are representation independent.

2.2.2 Spectral Method

Given a Hankel matrix Hf of rank n, we can recover the minimal WFA A realizing f by

using the method proposed in [BCLQ14].

Let Σ′ = Σ ∪ {ε}. We consider a basis B = (P ,S), with P ,S ⊂ Σ∗. Let HB be a
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sub-block of Hf defined over B.

Definition 2.2.10. The basis B = (P ,S) is prefix-closed and complete if P = P ′ · Σ′ for

some P ′, and HB has rank n.

When B = (P ,S) is prefix-closed and complete, we can consider the following elements:

• a sub-block Ha defined over B by Ha(u, v) = H(u · a, v) for each a ∈ Σ′;

• a vector hP,ε having coordinates hP,ε(u) = H(u, ε);

• a vector hε,S having coordinates hε,S(v) = H(ε, v).

Then, from the rank factorization HB = FB>, we can compute a minimal weighted automa-

ton A = 〈α, {Aa},β〉 for f :

α> = h>ε,SB
>+, β = F+hP,ε, Aa = F+HaB

>+. (2.6)

If we denote with O(k) the time required to compute the Hankel matrix Hf , and n is the

rank of Hf , we have that the total running time of the spectral algorithm is O(k+n|P||S|+

n2|P||Σ|).

2.3 Language Modelling

In this section we briefly introduce the task of language modelling. We also provide a very

high level overview of recurrent neural networks and black-box models computing functions

assigning a real value to sequential data. The content of this chapter is based on several

sources, including [GBC16, Low20, EA20].

2.3.1 Recurrent Neural Networks

Recurrent neural networks [Elm90, HS97], or RNNs, are a class of neural networks designed

to process sequential data. The main difference with other kind of neural networks, like
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feedforward neural networks, is that RNNs are characterized by feedback loops. These serve

to maintain an internal memory based on history information through the hidden states, and

allow us to model data that is correlated in time by using sequences as input of the RNN. At

each time step, a RNN receives an input and returns a new state vector, depending on the

input and on the sequence obtained so far. The hidden states are updated at each time step

according to a function whose parameters are the same for all time steps. More specifically,

at each time step t we have the following update equations:


ht = g(Wht−1 + Uxt + b)

yt = softmax(Vht + c)

(2.7)

where W is the matrix of parameters shared between hidden states, U and V are the input

and output matrices, respectively, and b and c represent input and output bias. The acti-

vation function g represents the non-linear component of the RNN. Examples of activation

functions are sigmoid, tanh, ReLU.

This class of models can be employed in a variety of tasks, thanks to the several types of

existing architectures [WGY18b, MWG+20]. For example, a RNN with a single output at

the last time step can be used to make a categorical prediction, while one with an output at

each time step can be used as a language model. The most commonly used class of RNNs is

that of Long Short Term Memory networks (LSTMs). A LSTM is a recurrent neural network

with a gating mechanism determining how information is passed between time steps. We

won’t analyze in detail the different types of architectures, as it is outside the scope of this

thesis. For an overview of their expressive power we refer the reader to the work of Weiss et

al. and Merrill et al. [WGY18b, MWG+20].
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2.3.2 The Task of Language Modelling

The task of language modelling (LM) consists of predicting the next element in a sequence,

given the previous ones. Given a sequence, the joint probability over all sequences is fac-

torized into the product of conditional probabilities. The way the model compute these

conditional probabilities vary according to the LM technique that is employed. Language

models can be implemented using RNNs [MKB+10]. In particular, a language modelling

RNN (LM-RNN) receives as input a sentence, one word at the time, and updates the hidden

state ht at time step t. Then, the model outputs a probability distribution over all words

in the vocabulary. This way, the prediction of the next word is dependent on all previous

words seen by the model. When computing the probability associated to a string, a LM-RNN

defines a distribution over sequences that can be represented by a Hankel matrix.

In this thesis, we are particularly interested in studying the broader case of LM black-

box models, where we do not require access to the inner representation of the networks. In

addition to RNNs, other important models are encompassed by the general setting of black

boxes for language modelling, for example transformers [VSP+17].

2.4 AAK Theory

In this section, we introduce the work of Adamyan, Arov and Krein which has come to

be known as AAK theory [AAK71]. This theory applies to Hankel operators and complex

functions. We start by recalling some fundamental mathematical definitions from functional

analysis [Zhu90]. Then, we define Hankel operators in sequence spaces, and use Fourier

analysis to reformulate this theory in function spaces. More details can be found in Appendix

A. A comprehensive presentation of the concepts recalled in this section can be found in the

books of Nikolski and Peller [Nik02, Pel12], which we follow closely for the exposition of this

topic.
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2.4.1 Operator Theory

Given a Hilbert space, and 0 < p < ∞, we write ‖v‖p to denote the `p norm of a vector v.

We can then define the corresponding induced norm on linear operators.

Definition 2.4.1. Let T : X → Y be a linear operator between Hilbert spaces, the operator

norm of T is defined as:

‖T‖ = sup{‖Tx‖Y : ‖x‖X = 1}.

We denote with T the (infinite) matrix associated with the operator T by some (canon-

ical) orthonormal basis.

We define the following set of properties for linear operators between Hilbert spaces.

Definition 2.4.2. Let T : X → Y be a linear operator between Hilbert spaces.

• T is bounded if it has finite operator norm;

• T has finite rank if its range has finite dimension;

• T is compact if the image of the unit ball in X is relatively compact.

We remark that compact operators between Hilbert spaces can be alternatively defined

in terms of converging sequences: an operator is compact if it is the limit of finite-rank

operators in the operator norm. If the operator T is the limit in the operator norm of the

sequence of finite-rank operators {T i}i≥0, we denote with T i → T the limit:

lim
i→∞

∥∥T i − T∥∥ = 0.

Finally, note that a sufficient condition to show compactness is to require that the Hankel

operator considered is bounded and of finite rank.

Let 〈·, ·〉 denote the inner product of a given Hilbert space. Let T : X → Y be a

compact operator, the adjoint operator T ∗ is the linear operator T ∗ : Y → X such that
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〈Tx, y〉Y = 〈x, T ∗y〉X , for x ∈ X, y ∈ Y . Given the adjoint operator, it is possible to

introduce two definitions that will play a fundamental role in our analysis.

Definition 2.4.3. The singular numbers {σn}n≥0 of a compact operator T are the square

roots of the eigenvalues of the self-adjoint operator T ∗T , arranged in decreasing order. We

say that a singular number is simple if it is not repeated.

By convention, the singular numbers are arranged in decreasing order and according to

their multiplicities. In particular, we have that σ0(T ) = ‖(T ∗T )‖1/2 = ‖T‖.

Definition 2.4.4. Let σ be a singular number for T . A σ-Schmidt pair {ξ,η} for T is a

couple of norm 1 vectors such that:


Tξ = ση

T∗η = σξ

Using singular numbers and Schmidt pairs it is possible to define the Hilbert-Schmidt

decomposition, a generalization of the compact SVD for the infinite matrix of a compact

operator T :

Tx =
∑
n≥0

σn〈x, ξn〉ηk. (2.8)

Using this decomposition, it is clear that the singular numbers of a compact operator T

can also be characterized in relation to Fk, the set of continuous linear operators R with

rank(R) ≤ k:

σk(T ) = min{‖T −R‖ : R ∈ Fk}.

This definition has the advantage that it can be generalized to arbitrary bounded operators,

by simply defining:

σk(T ) = dist(T,Fk). (2.9)

Definition 2.4.5. The spectral norm ‖T‖ of the matrix representing the operator T is

the largest singular number of T .
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It is important to note that the spectral norm of T corresponds to the operator norm of

T .

2.4.2 Hankel Operators on Sequences

Given a function f : N → R, we consider the Hankel matrix Hf defined by the Hankel

property Hf (i, j) = f(i + j). This matrix can be interpreted as the expression of a linear

(Hankel) operator Hf : `2 → `2 in terms of the canonical basis of the sequence space.

The property on the Hankel matrix can be rephrased as an operator identity. Defining the

shift operator by S(x0, x1, . . . ) = (0, x0, x1, . . . ) and denoting its left inverse by S∗, with

S∗(y0, y1, . . . ) = (y1, y2, . . . ), we have that H is a Hankel operator if and only if the following

Hankel equation is satisfied:

HS = S∗H. (2.10)

The following theorem characterizes bounded Hankel operators on the space of square

summable sequences.

Theorem 2.4.1 (Nehari [Neh57]). Let H : `2 → `2 be a Hankel operator with Hankel matrix

defined as H(j, k) = {αj+k}j,k≥0 :

H =



α0 α1 α2 . . .

α1 α2 α3 . . .

α2 α3 α4 . . .

...
...

...
. . .


(2.11)

The operator H is bounded on `2 if and only if there exists a function ψ ∈ L∞(T) such

that:

αm = ψ̂(m), m ≥ 0. (2.12)

In this case:

‖H‖ = inf{‖ψ‖∞ : ψ̂(n) = α(n), n ≥ 0}, (2.13)
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where ψ̂(n) is the n-th Fourier coefficient of ψ.

Example 2.4.2. Let αn = 1
n+1

, n ≥ 0. The matrix:

H =



1 1
2

1
3

. . .

1
2

1
3

1
4

. . .

1
3

1
4

1
5

. . .

...
...

...
. . .


is a Hankel matrix, and is often referred to as the Hilbert matrix. We can apply Theorem 2.4.1

to show that the Hilbert matrix is bounded. In particular, it is possible to show that the

function on T:

ψ(eit) = ie−it(π − t), t ∈ [0, 2π)

is such that ||ψ||∞ = π, and:

ψ̂(n) =
1

n+ 1
, n ≥ 0.

2.4.3 Hankel Operators on Hardy Spaces

Using the Fourier isomorphism we can introduce an alternative characterization of Hankel

operators with respect to complex function spaces. The first step needed to reformulate

the definition is to embed `2 into `2(Z). This way, we can use the Fourier isomorphism

to associate a complex function to each sequence in `2(Z). In particular, given a sequence

µ = (µ0, µ1, . . . ) ∈ `2, we can define two functions in L2(T):

µ− =
∞∑
j=0

µjz
−j−1, (2.14)

µ+ =
∞∑
j=0

µjz
j. (2.15)
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On the other hand, a function φ ∈ L2(T) in the complex variable z can be represented by

its Fourier expansion:

φ =
∑
n∈Z

φ̂(n)zn (2.16)

and can be identified, using the orthonormal basis {zn}n∈Z, with the sequence of its Fourier

coefficients

φ̂(n) =

∫
T
φ(z)z̄ndz, n ∈ Z. (2.17)

We can partition the function space L2(T) into two subspaces.

Definition 2.4.6. For 0 < p ≤ ∞ , the Hardy space Hp on T is the subspace of Lp(T)

defined as:

Hp = {φ ∈ Lp(T) : φ̂(n) = 0, n < 0}, (2.18)

while the negative Hardy space on T is the subspace of Lp(T)

Hp
− = {φ ∈ Lp(T) : φ̂(n) = 0, n ≥ 0}. (2.19)

Hardy spaces can also be defined on the open unit disc D.

Definition 2.4.7. The Hardy space Hp(D) on D for 0 < p < ∞ consists of functions φ

analytic in D and such that:

‖φ‖p := sup
0<r<1

(∫
T
|φ(rξ)|pdm(ξ)

)1/p

<∞ (2.20)

and it is equipped with the norm ‖·‖p. For p = ∞, H∞(D) is the space of bounded analytic

functions in D with norm:

‖φ‖∞ := sup
ξ∈D
|φ(ξ)|. (2.21)

Interestingly, Hp(D) and Hp can be canonically identified by associating a function φ

defined in the disc with its limit on the boundary, which is a function in Hp (a proof can be
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found in Nikolski [Nik02]). Thus, we will identify such functions in the unit disc with their

boundary value on the unit circle.

Now, we can reformulate the definition of Hankel operators in Hardy spaces (see [Nik02]

for a proof that those definitions are equivalent). We denote with P− : L2(T) → H2
− the

orthogonal projection on the negative Hardy space.

Definition 2.4.8. Let φ be a function in the space L2(T). A Hankel operator is an

operator Hφ : H2 → H2
− defined by Hφg = P−φg. The function φ is called a symbol of the

Hankel operator Hφ.

The Hankel matrix H associated to the Hankel operator Hφ : H2 → H2
− is:

H =



φ̂(−1) φ̂(−2) φ̂(−3) . . .

φ̂(−2) φ̂(−3) φ̂(−4) . . .

φ̂(−3) φ̂(−4) φ̂(−5) . . .

...
...

...
. . .


. (2.22)

We remark that to each Hankel operator we can associate more than one symbol: the function

φ is a symbol, together with any other function having the same component in the negative

Hardy space. This can be seen using a reformulation of Theorem 2.4.1.

Theorem 2.4.3 (Nehari [Neh57]). Let φ ∈ L2(T) be a symbol for the Hankel operator on

Hardy spaces Hφ : H2 → H2
−. Then, Hφ is bounded on H2 if and only if there exists

ψ ∈ L∞(T) such that ψ̂(m) = φ̂(m) for all m < 0. If the conditions above are satisfied, then:

‖Hφ‖ = inf{‖ψ‖∞ : ψ̂(m) = φ̂(m), m < 0}. (2.23)

As a consequence, if Hφ is a bounded operator, we can consider without loss of generality

φ ∈ L∞(T).

An alternative characterization of Hankel operators relies on the use of the shift operator

S in the function space, and generalises Equation 2.10. In fact, for an operator H : H2 → H2
−
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we have the following operator identity:

HS = P−SH. (2.24)

This equation, which is also referred to as Hankel equation, corresponds to the Hankel

property seen in Equation 2.10. In the case of Hardy spaces, the operator of multiplication

by z acts as right shift S on the space of Fourier coefficients, in fact (̂zφ)(n) = φ̂(n − 1).

Analogously, the left inverse S∗ corresponds to the truncated multiplication operator. We

remark that the standard proof of Nehari theorem relies on the fact that the shift and its

inverse are isometries.

We recall the definition of an important class of complex functions.

Definition 2.4.9. The complex function g ∈ Lp(D), p > 0, is rational if g = t/q, where

t and q are polynomials. The rank of g is the maximum between the degrees of t and q. A

rational function is strictly proper if the degree of t is strictly smaller than that of q.

Finite rank Hankel operators are closely related to the theory of rational functions.

Theorem 2.4.4 (Kronecker [Kro81]). Let Hφ be a bounded Hankel operator with matrix H.

Then H has finite rank if and only if P−φ is a strictly proper rational function. Moreover

the rank of H is equal to the number of poles (counted with multiplicities) of P−φ inside the

unit disc.

We conclude this section by mentioning a few important results the theory of shift-

invariant spaces.

Definition 2.4.10. A function f ∈ H2 is called inner if it is unimodular almost everywhere

on the unit circle, whereas it is called outer if Span{znf : n ≥ 0} = H2.

The following theorem, known as Beurling’s Theorem, states that shift-invariant spaces

can be characterized by means of inner functions [Beu49].
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Theorem 2.4.5 (Beurling’s Theorem [Beu49]). Let E be a closed shift-invariant subspace

of H2, SE ⊂ E. Then, there exists a unique inner function Θ ∈ H2 such that:

E = ΘH2 = {Θf : f ∈ H2}. (2.25)

2.4.4 AAK Theorem

We can now introduce the main result of Adamyan, Arov and Krein [AAK71]. The theorem,

stated for Hankel operators over Hardy spaces, shows that for infinite dimensional Hankel

matrices the constraint of preserving the Hankel property does not affect the achievable

approximation error.

Theorem 2.4.6 (AAK Theorem [AAK71]). Let Hφ be a compact Hankel operator of rank

n, matrix H and singular numbers σ0 ≥ · · · ≥ σn−1 > 0. Then there exists a unique Hankel

operator Hg with matrix G of rank k < n such that:

‖Hφ −Hg‖ = ‖H−G‖ = σk. (2.26)

We say that G is the optimal approximation of size k of H.

We denote with Rk ⊂ H∞− the set of strictly proper rational functions of rank k, and we

consider the set of functions:

H∞k = {ψ ∈ L∞(T) : ∃g ∈ Rk,∃l ∈ H∞, ψ = g + l}. (2.27)

The proof of this theorem is directly connected with the problem of approximating a bounded

function defined on the unit circle. In fact, we can reformulate AAK theorem in terms of

the symbols associated with the Hankel operators.

Theorem 2.4.7 ([AAK71]). If φ ∈ L∞(T) then there exists a complex function ψ ∈ H∞k
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such that:

‖φ− ψ‖∞ = σk(Hφ). (2.28)

This theorem provides us with an alternative interpretation of singular numbers, relating

them to the “smoothness” of the corresponding operator (or symbol). The advantage of this

second formulation is that its proof is constructive, and tells us how to find the function ψ.

We state as corollary the key point of the proof of AAK Theorem, that provides us with

a practical way to find the best approximating symbol.

Corollary 2.4.7.1. Let φ and {ξk,ηk} be a symbol and a σk-Schmidt pair for Hφ. A function

ψ ∈ L∞(T) is the best AAK approximation according to Theorem 2.4.7, if and only if:

(φ− ψ)ξ+
k = σkη

−
k . (2.29)

Moreover, the function ψ does not depend on the particular choice of the pair {ξk,ηk}.

Note that the solutions of Theorem 2.4.6 and 2.4.7 are related.

Corollary 2.4.7.2. Let ψ ∈ H∞k , with ψ = l+g, g ∈ Rk, l ∈ H∞. If ψ solves Equation 2.28,

then G = Hg is the unique Hankel operator from Theorem 2.4.6.

Proof. Let Hφ be a Hankel operator with symbol φ(z) ∈ L∞(T) and matrix H.

Let ψ(z) = g(z) + l(z) ∈ H∞k be the solution of Equation 2.28. We have:

‖Hφ −Hψ‖ = ‖Hφ−ψ‖ (2.30)

=
∥∥∥Hσkη

−
k (z)/ξ+k (z)

∥∥∥ (2.31)

≤ σk
∥∥η−k (z)/ξ+

k (z)
∥∥
∞ = σk (2.32)

where first we used Corollary 2.4.7.1 and then Nehari’s Theorem. Now, using the definition

of Hankel operator, we have:

‖Hφ −Hψ‖ = ‖Hφ −Hg‖ = ‖H−G‖ ≤ σk. (2.33)
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Since ‖H−G‖ ≥ σk (from Eckart-Young theorem [EY36]), it follows that ‖H−G‖ = σk.

Note that G has rank k, as required, because g ∈ Rk(Theorem 2.4.4).

2.4.5 Generalized AAK Theory

Within the functional analysis community, there have been various attempt to generalize the

results of AAK theory [TV94, Car09, ACP15, Pop03]. As noted in the previous sections,

there are several ways to define Hankel operators, depending on whether one is considering

the characterization in terms of shifts or of symbol. We are going to consider the characteri-

zation in terms of shift operators, and extend the definition of Hankel operator according to

the work of Treil and Volberg [TV94]. In their paper, they provide a generalization of Hankel

operators and of the Hankel equation (Equation 2.24), where the role of the shift operators

is played by two distinct operators, that are not necessarily isometries. This generalized

version of AAK theory will be used in Chapter 7.

Let H1 and H2 be two Hilbert spaces. Let S1 be an expanding operator in H1, and S2

be a contractive operator in H2. Let H2 = H+
2 ⊕H−2 be an orthogonal decomposition of H2

such that S2H+
2 ⊂ H+

2 . Let P+ and P− be the orthogonal projections of H2 onto H+
2 and

H−2 respectively. We recall the definitions from Treil and Volberg [TV94].

Definition 2.4.11. A generalized Hankel operator Γ : H1 → H−2 is a bounded linear

operator satisfying the following relation:

ΓS1 = P−S2Γ. (2.34)

The generalization of the concept of symbol in this setting is the multiplier.

Definition 2.4.12. A multiplier is a bounded operator T : H1 → H2 satisfying

TS1 = S2T. (2.35)



CHAPTER 2. TECHNICAL BACKGROUND 29

Classical Hankel operator H Generalized Hankel operator Γ
H : H2 → H2

− Γ : H1 → H−2
HS = P−SH ΓS1 = P−S2Γ

S : H2 → H2, S(f) = zf S1 : H1 → H1,S2 : H2 → H2

S isometry S1 expansive, S2 contractive
H2 Hardy space H1

H2
− Neg Hardy space H−2
L2(T) = H2 ⊕H2

− H2 = H+
2 ⊕H−2

Table 2.1: Comparison between classical and generalized Hankel operators.

Given a multiplier T , is it possible to define a Hankel operator ΓT such that, for f ∈ H1:

ΓTf = P−Tf.

In Table 2.1 we compare the classical definition of Hankel operator with that of the

generalized Hankel operator. As noted at the beginning of this section, the main conceptual

difference is that in the second case the shift is replaced by two distinct operators, that do

not need to be isometries. By setting S1 = S2 = S, H1 = H2 andH2 = L2(T) the generalized

definition reduces to the classical one.

Let A be a self-adjoint operator on a separable Hilbert space H, and let P+ and P− be

the orthogonal projections onto the non negative and strictly negative part of its spectrum.

We denote H∓ = P∓H and A− = A|H− . We assume that A− is invertible. Let

K+ = {v ∈ H : (Av,v) ≥ 0} (2.36)

be the cone of A-nonnegative vectors.

Theorem 2.4.8 ([Iok64]). Let A− be invertible and let S be a bounded operator in H such

that SK+ ⊂ K+ and P+SP− is a compact operator. Then there exists a subspace M of K+

which is maximal (by inclusion) and S-invariant, i.e. SM⊂M.

We recall that the singular numbers of a Hankel operator Γ : H1 → H−2 on a Hilbert
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space can be characterized in terms of subspaces M⊂ H1 in the following way:

σn(Γ) = inf{‖Γ|M‖ : codimM≤ n}.

Using the fixed point theorem stated above, we obtain the following version of the AAK

theorem:

Theorem 2.4.9 (Generalized AAK Theorem [TV94]). Let Γ be a generalized Hankel operator

with respect to the operators S1 (expansive) ans S2 (contractive). Let {σi}i≥0 be the sequence

of its singular numbers. Then:

σn(Γ) = inf{‖Γ|M‖ :M, codimM≤ n, S1M⊂M}

and the infimum is attained.

It is important to remark that this version of the AAK theorem is not constructive.

When restricting to the setting of a classical Hankel operator, it is possible to make this

proof constructive by leveraging Theorem 2.4.5 and Theorem 2.4.3. In fact, when we are

considering the shift operator defined over Hardy spaces, i.e. S1 = S2 = S, the S-invariant

space M considered in Theorem 2.4.9 is completely determined by the zeros of the singular

functions associated to σn.



Chapter 3

An AAK Theory Approach to

Approximate Minimization

In this chapter, we show how the approximate minimization problem can be studied in terms

of Hankel matrices. We then illustrate the connections with the problem solved by AAK

theory, and the advantages in the use of the spectral norm.

Then, we analyze the case of models over one-letter alphabets. We provide a framework

to reformulate the approximate minimization problem using the formalism of AAK theory.

We show how we can associate a complex rational function to a given WFA over a one-letter

alphabet. Finally, we conclude the chapter by providing the “recipe” to apply AAK theory

that will be used in the following two chapters.

3.1 Low-Rank Approximation

The approach we chose to tackle the approximate minimization problem is based on the study

of the Hankel matrix of the original, given model. In particular, Theorem 2.2.1 highlight a

fundamental connection between the size of an automaton and the rank of the corresponding

Hankel matrix. This result motivates our choice to reformulate the approximation problem

as a low-rank approximation of the Hankel matrix. The matrix obtained has rank smaller

31
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than the original one, so by Theorem 2.2.1 the WFA associated with it has fewer states and

is, therefore, a candidate solution for the approximate minimization problem.

The task of approximating a matrix with one of smaller rank is a well-studied minimiza-

tion problem. An analytical solution in terms of the singular value decomposition is due to

Schmidt, Eckart and Young, and Mirsky [EY36, Mir60, Sch89].

Theorem 3.1.1 ([EY36, Mir60, Sch89]). Let H be a matrix of rank n, and let {σi}i≥0 be its

singular numbers, with σ0 ≥ · · · ≥ σn−1 > 0. Then, if R is a matrix of rank k, we have:

‖H−R‖ ≥ σk. (3.1)

The equality is attained when R corresponds to the truncated SVD of H.

Note that a low-rank approximation obtained by truncating the singular value decompo-

sition is not in general a Hankel matrix. This can be seen in the following example.

Example 3.1.2. We consider the Hankel matrix M ∈ R3×3,

M =


1 2 3

2 3 1

3 1 2

 .

The singular value decomposition of M is M = UDV>, with

U =


1√
3

√
2
3

0

1√
3
− 1√

6
1√
2

1√
3
− 1√

6
− 1√

2

 , D =


6 0 0

0
√

3 0

0 0
√

3

 V =


1√
3
− 1√

2
− 1√

6

1√
3

0
√

2
3

1√
3

1√
2
− 1√

6

 .
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The rank 2 matrix M obtained by truncating the SVD is not Hankel:

M =


1 2 3

5
2

2 3
2

5
2

2 3
2

 .

The Hankel property is necessary to extract a WFA from the matrix. Thus, we aim to

find a method that preserves it. As shown in Section 2.4, AAK theory provides a (partial)

answer to this problem. In particular, Theorem 2.4.6 states that, under proper assumptions,

we can obtain a result comparable to the one of Theorem 3.1.1, while searching for the best

approximation within the class of Hankel matrices. This means that it is possible to find a

Hankel matrix performing as well as the truncated SVD while approximating with respect

to the spectral norm.

3.1.1 The Significance of the Spectral Norm

A key point in solving approximation tasks is to decide how to quantify the error between

the original and the approximate model. It is therefore natural to wonder if there are norms

that are preferable to others. There are a few fundamental properties that we consider to

be desirable in our setting.

• We think that being “architecture independent” is an important feature for the chosen

norm, as it allows us to compare different classes of models using the same norm. For

example, one can think of the literature on approximating RNNs using WFAs. In that

case, the objective is to extract from a trained RNN an automaton that accurately

mimics its behaviour (we refer the reader to Chapter 8 for a literature review). Us-

ing the spectral norm, we can measure the distance between a given RNN and the

extracted WFA. This is particularly valuable, especially in light of the paper of Mar-

zouk and de la Higuera [MdlH20], where the authors show that the general equivalence
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problem between classes of WFAs and RNNs is not decidable. Choosing the spectral

norm has the advantage that it allows us to analyze different models through their

Hankel matrices, independently of the specific architecture considered. This means

that addressing the approximate minimization problem using the spectral norm can

facilitate the comparison between different classes of models, and the development of

a distance that can be precisely computed (and minimized).

• The chosen norm should be computationally reasonable to minimize. Indeed, as shown

in our first result [BLP+21], which will be discussed in Chapter 4, the spectral norm

of the Hankel matrix of a WFA can be computed in polynomial time. Similarly,

we show in our second result [LPR21] (detailed in Chapter 5) that minimizing the

approximation error between a WFA and a black box model can be (asymptotically)

solved optimally in a tractable way. This is not the case for every metric. For instance,

the distance between two WFAs can be computed using behavioural metrics, a powerful

technique for understanding approximate behavioural equivalence. A metric based on

bisimulation is presented in the work of Balle, Gourdeau and Panangaden [BGP17,

BGP22]. While exploring this approach can still be of interest, the fact that this

metric is hard to compute makes it unsuitable for our purposes. Moreover, this metric

is specifically designed for weighted automata, so it is not directly applicable to other

classes of models dealing with sequential data.

• It is important to choose a norm that can be computed accurately. The spectral norm

is a good candidate for the task. For example, it is possible to precisely compute the

singular values of a WFA in its SVA form using its Gramian matrices. Moreover, the

choice of the spectral norm allows us to exploit the results from AAK theory illustrated

in Chapter 2. This is a great advantage compared, for example, to solving the same

rank-constrained optimization problem for the `2 norm of the original function (which

is non convex) [BPP19]. Note that it is still possible to obtain interesting results in the
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`2 norm using balanced truncation methods [BPP19], but the approximation recovered

is not optimal.

• Ideally, we would like to find a global minimum of the chosen norm. We would also like

to solve the approximate minimization problem optimally. Measuring the error using

the spectral norm has the advantage that, under appropriate assumptions, it is possible

not only to find a global minimum for the approximation error, but also to recover (at

least asymptotically) the model corresponding to the optimal approximation.

• Finally, it would be interesting to choose a norm that can be theoretically compared

with other norms. Theorem 2.4.7 helps us connect the spectral norm to other important

norms, like `2 norm and L∞ norm. While this is not of particular use in the context

of our current setting, the L∞ norm has proven to be very fruitful in related areas like

control theory [Ant05] and could be an interesting direction for future work.

It is important to notice that three of the points made above directly derive from the

application of AAK theory to the approximation problem. In fact, Theorem 2.4.6 provides us

with a way to find, precisely and efficiently, the matrix of the minimal error and the matrix

of the best approximation. It is important to remark that, while AAK theory is a theory

for Hankel operators using tools from harmonic analysis, the approximate minimization

problem is formulated in the context of functions over strings. Therefore, we need a way to

transfer the results from one setting to the other. To apply the results of AAK theory to

the approximate minimization problem of models computing functions on sequential data,

we divide the problem into two cases, depending on the size of the alphabet.

3.2 A Framework for One-Letter Alphabets

In this section, we analyze the case of alphabets Σ with the property that |Σ| = 1. In

this case, the set of strings Σ∗ can be identified with the set of natural numbers N by
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associating to each string its length. For example, if Σ = {a}, the empty string corresponds

to 0, while the string ′a′ corresponds to 1, ′aa′ to 2, ′aaa′ to 3, and so on. This way, the

rational function f : Σ∗ → R can be interpreted as a function f : N → R. Moreover, since

the natural numbers can be canonically embedded into Z, we can consider a more general

function f : Z → R. Note that the identification of Σ∗ with N and the embedding into Z

are the fundamental steps allowing us to apply the Fourier isomorphism to reformulate the

problem in the Hardy space, where it can be solved using Theorem 2.4.6. Unfortunately, this

idea cannot be directly generalized to bigger alphabets, since in this case, the corresponding

embedding yields a non-abelian structure. We will discuss this in detail later in the thesis.

3.2.1 From Hankel Matrix to Hankel Operator

We consider a Hankel matrix arising from a model over a one-letter alphabet and analyze

how it relates to the Hankel operators used in AAK theory. For simplicity, we assume that

the model is a WFA, but the reasoning can easily be generalized to the broader setting of

language modelling black boxes (where the Hankel matrix does not necessarily have a finite

rank). Let A = 〈α,A,β〉 be a weighted automaton with n states over a one-letter alphabet.

Let fA : Σ∗ → R be the rational function computed by the WFA A = 〈α,A,β〉, and let

H be its Hankel matrix. Following the theory presented in Section 2.4, we can associate to

a rank n Hankel matrix H two different operators, which we will denote with Hf and Hφ.

On the one hand, we can consider the Hankel operator acting over sequences Hf : `2 → `2,

associated with the function fA : Σ∗ → R computed by the WFA. Thus, the Hankel matrix

is defined by:

H(i, j) = fA(i+ j) for i, j ≥ 0, (3.2)

where the identification of Σ∗ and N allows us to interpret the concatenation of two strings

as the sum of their length. Note that in this case we call f “rational” because it is realized
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by a WFA of size n. The matrix H can then be represented as:

H = Hf =



fA(0) fA(1) fA(2) . . .

fA(1) fA(2) fA(3) . . .

fA(2) fA(3) fA(4) . . .

...
...

...
. . .


. (3.3)

On the other hand, we can interpret the matrix H as Hφ, the matrix associated with a

Hankel operator over complex (Hardy) spaces Hφ : H2 → H2
−. We recall that, in this case,

the operator and matrix are related to a complex function φ ∈ L2(T), the symbol, satisfying

the following property: Hφf = P−φf . The entries of the matrix are now defined by means

of the Fourier coefficients of φ as:

H(j, k) = φ̂(−j − k − 1) for j, k ≥ 0. (3.4)

Now, the function P−φ = φ̂(−j − k − 1) is “rational” in the sense of Definition 2.4.9. The

matrix H can be represented as:

H = Hφ =



φ̂(−1) φ̂(−2) φ̂(−3) . . .

φ̂(−2) φ̂(−3) φ̂(−4) . . .

φ̂(−3) φ̂(−4) φ̂(−5) . . .

...
...

...
. . .


. (3.5)

Now, we can derive the relationship between fA and φ simply by looking at the entries of

the Hankel matrix. Since we have H = Hf = Hφ, the two representations of the Hankel
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matrix need to coincide. We have:

H =



fA(0) fA(1) fA(2) . . .

fA(1) fA(2) fA(3) . . .

fA(2) fA(3) fA(4) . . .

...
...

...
. . .


=



φ̂(−1) φ̂(−2) φ̂(−3) . . .

φ̂(−2) φ̂(−3) φ̂(−4) . . .

φ̂(−3) φ̂(−4) φ̂(−5) . . .

...
...

...
. . .


(3.6)

from which we obtain:

f(n) = φ̂(−n− 1). (3.7)

3.2.2 Symbols and Rational Functions

The framework we just described provides us with a straightforward way to associate a

symbol to a given WFA.

We consider a minimal WFA A = 〈α,A,β〉 with n states defined over a one-letter

alphabet Σ, and Hankel matrix H. Let f : Σ∗ → R be the function realized by A. Since

Σ∗ is isomorphic to N, the function computed by A is f(x) = α>Axβ. To determine the

symbol φ of H, we use Equation 3.7.

We obtain:

P−φ =
∑
k≥0

f(k)z−k−1 =
∑
k≥0

α>Akβz−k−1 = α>(z1−A)−1β (3.8)

where the last equality holds if A is irredundant. This is the component of the symbol that

belongs to H2
−. It is easy to see that the complex function obtained is a rational function,

with number of poles (counted with multiplicity) equal to the size of the WFA.

Representing a symbol in terms of the parameters of a WFA has the great advantage

that allows us to leverage at the same time properties from functional analysis and from

the theory of weighted automata. This description will prove to be particularly useful in

Chapter 4.
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3.2.3 Recipe to Apply AAK Theory

In order to tackle approximate minimization using AAK theory, we need to reformulate

the problem in terms of Hankel operators and functions in the complex space. In the one-

letter case, this is possible thanks to the framework introduced in the previous sections.

In particular, a direct correspondence between a symbol and the function computed by a

WFA or black-box model is obtained in Equation 3.7. In the next two chapters we study the

approximate minimization problem of WFAs and black-box models over one letter alphabets.

To solve it, we apply AAK theory according to the following steps:

1. Given a model on a one-letter alphabet, consider its Hankel matrix H and the function

f that it is computing. By applying the second interpretation of the Hankel matrix,

it is possible to derive the negative Fourier coefficients of a symbol φ from the entries

of the Hankel matrix. In the case of WFAs, that we study in Chapter 4, a symbol can

be directly computed using Equation 3.8.

2. Now, we want to apply AAK theory to solve the approximation problem. This can be

done in different ways. In Chapter 4, where an expression for φ has been obtained,

we leverage Theorem 2.4.7 to find ψ ∈ L∞(T), the best approximation of φ in the

infinity norm. In Chapter 5, where an expression for φ is not readily available, we use

a different (equivalent) version of this theorem. In both cases, this step is fundamental

to obtain an expression for the function ψ.

3. From ψ, we are interested in extracting the rational component. To achieve this, we

study the position of the poles of ψ, and apply Theorem 2.4.4.

4. The last step consists in finding a WFA representation for the optimal approximation.

This is implemented very differently in the two chapters. In the case of Chapter 4,

where we are minimizing a WFA, using Equation 3.8 allows us to effectively represent

complex functions in terms of the parameters of weighted automata. Thus, the rational
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Figure 3.1: Graphical representation of the generative probabilistic automaton described in
Example 3.2.1.

function obtained in the previous step directly reveals the parameters of the optimal

approximation, which can be found precisely. In the case of Chapter 5, instead, we

first obtain the Hankel matrix corresponding to the optimal approximation, and then

recover a WFA using the spectral method.

It is important to remark that most of the results we use are obtained in the context of

operators, while the setting we are interested in is the one of matrices. To apply AAK theory,

we choose to work with the basis of the Hardy spaces. This allows us to alternate between

matrix and operator and to directly transfer results from one interpretation to the other.

Thus, while we keep the notations distinct to remain faithful to the original definitions (e.g.,

compactness is a property defined for the operator H, not for the matrix H), to have an

intuition of the results it is always possible to think in terms of Hankel matrices.

We consider the following example, from the paper [BLP+21].

Example 3.2.1. Let |Σ| = 1, Σ = {x}, we consider the WFA A = 〈α,A,β〉 represented in

Figure 3.1, with:

A =

0 1
2

1
2

0

 , α =


√

3
2

0

 , β =


√

3
2

0

 ,

Note that A is a generative probabilistic automaton. Indeed, we have that

• fA(x) ≥ 0

•
∑

x∈Σ∗ fA(x) = 1,
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since the rational function realized by the WFA is defined as:

fA(x · · ·x) = fA(k) = α>Akβ =


0 if k is odd

3
4
2−k if k is even

where k corresponds to the string where x is repeated k-times. We remark that A is minimal

and already in its SVA form, with Gramians

P = Q =

4
5

0

0 1
5

 . (3.9)

The corresponding Hankel matrix, with entries defined as H(i, j) = f(i+ j), has rank 2:

H =



fA(0) fA(1) fA(2) . . .

fA(1) fA(2) fA(3) . . .

fA(2) fA(3) fA(4) . . .

...
...

...
. . .


=



3
4

0 3
16

. . .

0 3
16

0 . . .

3
16

0 3
64

. . .

...
...

...
. . .


. (3.10)

Now, we can apply the second interpretation of the Hankel matrix and look at it with respect

to the symbol, using the definition H(j, k) = φ̂(−j − k − 1). We have:

H =



3
4

0 3
16

. . .

0 3
16

0 . . .

3
16

0 3
64

. . .

...
...

...
. . .


=



φ̂(−1) φ̂(−2) φ̂(−3) . . .

φ̂(−2) φ̂(−3) φ̂(−4) . . .

φ̂(−3) φ̂(−4) φ̂(−5) . . .

...
...

...
. . .


.

We can recover the rational component of a symbol, i.e. the projection of φ on the negative
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Hardy space.

P−φ =
∑
n≥0

φ̂(−n− 1)z−n−1 =
∑
n≥0

3

4
4−nz−2n−1 =

3z

4z2 − 1
.

Note that this is a complex rational function having degree 2, and it has two poles inside the

unit disc at z = ±1
2

(as predicted by Theorem 2.4.4). It is important to remark that from

the Hankel matrix we can only recover the negative Fourier coefficients of φ, meaning only

the component of the symbol that belongs to the negative Hardy space.



Chapter 4

Weighted Finite Automata on

One-Letter Alphabets

In this chapter, we study the approximate minimization problem of a class of weighted au-

tomata over a one-letter alphabet. We start by formulating the problem, with particular

emphasis on the hypothesis required. In Section 4.2, we analyze the main theoretical results,

leveraging the framework introduced in Chapter 3. This allows us to obtain a closed-form so-

lution for the optimal approximation problem. We then design an approximation algorithm,

presented in Section 4.3. We end the chapter with a derivation and analysis of the approxi-

mation error (Section 4.4), and with a few concluding remarks (Section 4.6). The content of

this chapter is presented in the work “Optimal Spectral-Norm Approximate Minimization

of Weighted Finite Automata” [BLP+21], that was published and presented at ICALP 2021

(the 48th International Colloquium on Automata, Languages, and Programming).

4.1 Problem Formulation

Let A = 〈α,A,β〉 be a minimal WFA with n states and real weights, defined over a one-

letter alphabet. We assume that A is in its SVA form, to obtain representation-independent

approximation bounds. Let H be the Hankel matrix of A, we denote with σi, for 0 ≤ i < n,

43
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the singular numbers. Given a target number of states k < n, we say that a WFA Âk with

k states solves the optimal spectral-norm approximate minimization problem if the Hankel

matrix G of Âk satisfies:

‖H−G‖ = σk(H). (4.1)

4.1.1 Assumptions

We list and justify our assumptions.

Size of the Alphabet

We restrict our focus on alphabets of one letter, so we assume |Σ| = 1. As noted in Sec-

tion 3.2, this implies that the set of strings Σ∗ can be identified with N, and embedded into

Z. This step is needed to be able to apply Fourier theory and to reformulate the problem

in terms of complex functions and Hardy spaces. This assumption is fundamental and will

hold for the rest of the chapter.

Compactness of the Operator

Theorem 2.4.6 requires the Hankel operator H to be compact. To ensure that this condition

is satisfied, we consider operators that have finite rank and are bounded. As noted in

Theorem 2.2.1, the first condition is automatically satisfied by all WFAs, and the rank of

the Hankel matrix is equal to the number of states. Moreover, since the rank is finite,

the singular values can be computed exactly using the Gramian matrices, introduced in

Definition 2.2.9. To guarantee that the minimal WFA A = 〈α,A,β〉 is associated to a

bounded operator, we assume that A is irreduntant, i.e. that ρ(A) < 1, where ρ is the

spectral radius of A. As a matter of fact, to guarantee boundness it is enough that the WFA

being considered computes a function f ∈ `2 (a proof of this statement can be found in the

paper of Balle, Panangaden and Precup [BPP19]). However, the stricter assumption on the

spectral radius is needed when computing the symbol associated to a WFA. This condition
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directly implies the existence of the SVA, and of the Gramian matrices P and Q, where

P = Q and are diagonal matrices [BPP19]. For example, we note that a minimal GPA

computes a function f ∈ `1, so the condition on ρ(A) is automatically satisfied by this class

of WFAs [BPP19]. We will briefly investigate the possibility of relaxing this assumption in

Section 4.5.

SVA Form

We assume that the WFA A = 〈α,A,β〉 is in SVA form. This assumption is not necessary,

as the SVA can be efficiently computed from a WFA satisfying the set of assumptions stated

above. Starting from a WFA in SVA form is particularly useful, as it allows us to obtain

results that are representation independent. Since the alphabet has size one, the Hankel

matrix H is symmetric. Therefore, if we denote with λi the i-th non-zero eigenvalue of

H, and we consider the components of α and β, we have that αi = sgn(λi)βi, where

sgn(λi) = λi/|λi|.

4.2 Approximate Minimization

In this section, we present the theoretical aspects of the proposed method for approximate

minimization. In particular, we provide a closed-form solution for the parameters of the

optimal WFA, and obtain the equations that will be used for the approximation algorithm

in the next section.

4.2.1 Outline

Solving the approximate minimization problem corresponds to applying Theorem 2.4.6. Our

objective is to find the optimal WFA, so we will focus on representing the inputs and outputs

of the problem effectively by means of WFAs. We proceed using the following steps:
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1. Compute a symbol φ for H using the dual interpretation of Hankel matrices. Following

what was described in Chapter 3, we use the Hankel matrix to obtain the negative

Fourier coefficients of φ, and derive its Fourier series.

2. Compute the optimal symbol ψ using Corollary 2.4.7.1. The objective at this point is

to derive the optimal symbol. In particular, we want to find a suitable representation

for the function ψ described in Theorem 2.4.7. The idea is that we define this function

in terms of the parameters of an auxiliary WFA Â. This allows us to leverage the

properties of weighted automata, while still keeping the formulation general. Then, we

are going to look for the parameters of Â that make ψ the solution of Theorem 2.4.7.

3. Extract the rational component by solving for g in Corollary 2.4.7.2. This step is

arguably the most conceptually challenging, as it requires to identify the position of

the function’s poles. In fact, we know from Theorem 2.4.4 that g has k poles, all inside

the unit disc. Thanks to the representation chosen for the functions, finding the poles

corresponds to studying the eigenvalues of the transition matrix of Â.

4. Obtain the optimal approximation. The extracted rational component g directly reveals

the parameters of the WFA Âk.

4.2.2 Finding a Symbol for the WFA

We follow the setting presented in Section 4.1 and consider a minimal WFA A = 〈α,A,β〉

with n states in SVA form, defined over a one-letter alphabet Σ = {a}, its Hankel matrix H,

corresponding to the bounded operator H, and the singular numbers σi, for 0 ≤ i < n. Let

f : Σ∗ → R be the function realized by A. We denote by x the string where a is repeated x

times, so we have f(x) = α>Axβ.

In the Section 3.2.2 we obtained in Equation 3.8 a representation for the negative Fourier

expansion of a symbol. Note that the series converges because A is irredundant. Since we are

dealing with a bounded Hankel operator, from Nehari’s Theorem we know that it is possible
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to consider a bounded symbol without losing any generality. Therefore, we can set

φ = α>(z1−A)−1β (4.2)

as a symbol for H, associated to the WFA A.

4.2.3 Finding the Optimal Symbol

The second step to solve the approximate minimization problem is to find a proper expression

for the complex functions ψ and e = φ − ψ described in Theorem‘2.4.7. The key idea is to

define the functions using the parameters of two auxiliary WFAs. This allows us to leverage

at the same time properties of WFAs and of complex functions. We define the WFAs as

follows. Let k be the target number of states of the best approximation, we consider a WFA

Â = 〈α̂, Â, β̂〉 with j ≥ k states, satisfying the following two properties:

1. 1 is not an eigenvalue of Â

2. the automaton E = 〈αe,Ae,βe〉 is minimal, where

Ae =

A 0

0 Â

 , αe =

 α

−α̂

 , βe =

β
β̂

 . (4.3)

Using the parameters of the automaton Â, and a constant C, we define a function

ψ = α̂>(z1− Â)−1β̂ + C. (4.4)

Analogously, we use the parameters of E to define the function

e = φ− ψ = α>e (z1−Ae)
−1βe − C. (4.5)

Now that we have a general expression for the functions, we want to find the parameters of
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Â that make ψ the solution of Theorem 2.4.7. The first important condition which needs

to be satisfied is the boundness around the unit circle: by definition, ψ is the sum of two

component, one that is bounded and one that has poles only inside the unit disc. Therefore,

there cannot be poles on the unit circle. Following our definition, the poles of ψ correspond to

the eigenvalues of Â, counted with their multiplicities. By assumption, 1 is not an eigenvalue

of Â, so ψ does not have any poles on the unit circle, and therefore ψ ∈ L∞(T). The same

holds for the function e = α>e (z1 − Ae)
−1βe − C. Since the first condition is satisfied,

we can use Corollary 2.4.7.1 to find the triple α̂, Â, β̂ such that ψ satisfies Equation 2.29.

Note that, with this purpose, the constant term C ∈ H∞ becomes necessary to characterize

ψ. In fact, while the H∞-component of the symbol does not affect the Hankel norm, it

plays a role in the computation of the L∞-norm (in Equation 2.28) according to Nehari’s

theorem (Theorem 2.4.1), so it cannot be dismissed. The assumption on the minimality of

the automaton E will be used later in this section.

Finding the functions in the Hardy space corresponding to a σk-Schmidt pair is relativity

straightforward.

Theorem 4.2.1 ([BLP+21]). Let σk be a singular number of the Hankel operator H. The

singular functions associated with the σk-Schmidt pair {ξk,ηk} of H are:

ξ+
k (z) = σ

−1/2
k β>(1− zA)−1ek (4.6)

η−k (z) = σ
−1/2
k α>(z1−A>)−1ek. (4.7)

If ψ is the best approximation to the symbol, then σ−1
k e has modulus 1 almost everywhere on

the unit circle ( i.e. it is unimodular).

Proof. Let F and B be the forward and backward matrices, respectively, with H = FB>,

P = F>F,Q = B>B. We consider the σk-Schmidt pair {ξk,ηk}. By definition, H>Hξk =
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σ2
kξk. By rewriting in terms of the FB factorization, we obtain:

H>Hξk = σ2
kξk (4.8)

BF>FB>ξk = σ2
kξk (4.9)

BPB>ξk = σ2
kξk (4.10)

BPek = σ2
kξk (4.11)

where in the last step we set ek = B>ξk, to reduce the SVD problem of H to the one of QP.

Note that, since P and Q are diagonal, ek is the k-th coordinate vector (0, . . . , 0, 1, 0, . . . , 0)>.

Since ek is an eigenvector of QP for σ2
k, we get:

BQ−1QPek = σ2
kξk (4.12)

BQ−1ek = ξk. (4.13)

Moreover, H is symmetric, so we have that the singular vectors ηk and ξk have the same

coordinates up to the sign of the corresponding eigenvalues. We obtain:

ξ+
k (z) =

∞∑
j=0

σ
−1/2
k β>Ajekz

j = σ
−1/2
k β>(1− zA)−1ek (4.14)

η−k (z) =
∞∑
j=0

σ
−1/2
k α>Aj>ekz

−j−1 = σ
−1/2
k α>(z1−A>)−1ek (4.15)

where the singular functions have been computed following Equation 2.14. If r is the multi-

plicity of σk, from Corollary 2.4.7.1 we get the following fundamental equation:

(φ− ψ)β>(1− zA)−1V = σkα
>(z1−A>)−1V
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where V =

(
0 1r

)>
is a n× r matrix. Consequently, we obtain the function:

σ−1
k e =

α>(z1−A>)−1V

β>(1− zA)−1V

which is unimodular, since αi = sgn(λi)βi, and A = sgn(λi)A
>.

We tied functions to WFAs by means of their parameters, so now we can investigate

how the fact that σ−1
k e is unimodular reflects on the structure of the WFA E = 〈αe,Ae,βe〉

associated with it. We remark that a parallel can be drawn between dynamical systems and

automata, by noting that the impulse-response of a discrete time-invariant Single-Input-

Single-Output SISO system can be parametrized as a WFA over a one-letter alphabet (more

details about this correspondence can be found in Section 8.3). This allows us to apply a

theorem from the control theory literature, and to find two matrices, Pe and Qe, satisfying

properties similar to those of the Gramians [CC97]. It is important to notice that, a priori,

the controllability and observability Gramians of E might not be well defined. The proof

of the following theorem relies on the minimality of the WFA E [Sch00], and builds on the

maximum modulus principle, according to which the maximum modulus of an holomorphic

function is attained on the boundary of the domain. We refer the reader to Appendix B.1

for a sketch of the proof, while the detailed, original version, can be found in the book of

Chui and Chen [CC97, Theorem 6.3].

Theorem 4.2.2 ([CC97]). Consider the function e = α>e (z1 −Ae)
−1βe − C and the cor-

responding minimal WFA E = 〈αe,Ae,βe〉 associated with it. If σ−1
k e is unimodular, then

there exists a unique pair of symmetric invertible matrices Pe and Qe satisfying:

(a) Pe −AePeA
>
e = βeβ

>
e

(b) Qe −A>e QeAe = αeα
>
e

(c) PeQe = σ2
k1
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We can now derive the parameters of the WFA Â = 〈α̂, Â, β̂〉 that make ψ the solution

of Theorem 2.4.7.

Theorem 4.2.3 ([BLP+21]). Let A = 〈α,A,β〉 be a minimal WFA with n states in its

SVA form, and let φ = α>(z1−A)−1β be a symbol for its Hankel operator H. Let σk be a

singular number of multiplicity r for H, with:

σ0 ≥ · · · > σk = · · · = σk+r−1 > σk+r ≥ · · · ≥ σn−1 > 0. (4.16)

We can partition the Gramian matrices P, Q as follows:

P = Q =

Σ 0

0 σk1r

 , (4.17)

where Σ ∈ R(n−r)×(n−r) is the diagonal matrix containing the remaining singular numbers,

and partition A, α and β to conform with the Gramians:

A =

A11 A12

A21 A22

 , α =

α1

α2

 , β =

β1

β2

 . (4.18)

Let R = σ2
k1n−r −Σ2, we denote by (·)+ the Moore-Penrose pseudo-inverse. If the function

ψ = α̂>(z1− Â)−1β̂ + C is the best approximation of φ, then:

• If α2 6= 0: 
β̂ = −ÂA>21(β>2 )+

α̂ = Â>RA12(α>2 )+

Â(A>11 −A>21(β>2 )+β>1 ) = 1

(4.19)
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• If α2 = 0: 
β̂ = (1− ÂA>11)(β>1 )+

α̂ = −(R− Â>RA11)(α>1 )+

ÂA>21 = 0

(4.20)

Proof. Since σ−1e = φ − ψ is unimodular, from Theorem 4.2.2 there exist two symmetric

nonsingular matrices Pe, Qe satisfying the fixed point equations:

Pe −AePeA
>
e = βeβ

>
e (4.21)

Qe −A>e QeAe = αeα
>
e (4.22)

and such that PeQe = σ2
k1. We can partition Pe and Qe according to the definition of

Ae (see Equation 4.3):

Pe =

P11 P12

P>12 P22

 , Qe =

Q11 Q12

Q>12 Q22

 .

From Equation 4.21 and 4.22, we note that P11 and Q11 correspond to the controllability

and observability Gramians of A:

P11 = Q11 = P =

Σ 0

0 σk1

 .

Moreover, since PeQe = σ2
k1, we get P12Q

>
12 = σ2

k1 − P2. It follows that P12Q
>
12 has rank

n− r. Without loss of generality we can set dim Â = j = n− r, and choose an appropriate

basis for the state space such that P12 =

(
1 0

)>
and Q12 =

(
R 0

)>
, with R = σ2

k1−Σ2.

Once P12 and Q12 are fixed, the values of P22 and Q22 are automatically determined. We
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obtain:

Pe =


Σ 0 1

0 σk1 0

1 0 −ΣR−1

 , Qe =


Σ 0 R

0 σk1 0

R 0 −ΣR

 . (4.23)

Now that we have an expression for the matrices Pe and Qe of Theorem 4.2.2, we can

rewrite the fixed point equations to derive the parameters α̂, Â and β̂. We obtain the

following systems:


P−APA> = ββ>

N−ANÂ> = ββ̂
>

−ΣR−1 + ÂΣR−1Â> = β̂β̂
>


P−A>PA = αα>

M−A>MÂ = −αα̂>

−ΣR + Â>ΣRÂ = α̂α̂>

(4.24)

where N =

1

0

 and M =

R

0

.

We can rewrite the second equation of each system as follows:


1−A11Â

> = β1β̂
>

−A21Â
> = β2β̂

>


R−A>11RÂ = −α1α̂

>

Â>RA12 = α̂α>2

(4.25)

If α2 6= 0, then also β2 6= 0 (recall that αi = sgn(λi)βi), and we have:


β̂ = −ÂA>21(β>2 )+

α̂ = Â>RA12(α>2 )+

Â(A>11 −A>21(β>2 )+β>1 ) = 1

(4.26)

with (α>2 )+ = α2

α>2 α2
and (β>2 )+ = β2

β>2 β2
.

If α2 = 0, we have ÂA>21 = 0. We remark that Â has size (n− r)× (n− r), while A>21

is (n− r)× r, so the system of equations corresponding to ÂA>21 = 0 is underdetermined if
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r < n
2
, in which case we can find an alternative set of solutions:


β̂ = (1− ÂA>11)(β>1 )+

α̂ = −(R− Â>RA11)(α>1 )+

ÂA>21 = 0

(4.27)

with Â 6= 0. On the other hand, if r ≥ n
2
, i.e. if the multiplicity of the singular number

σk is more than half the size of the original WFA, the system might not have any solution

unless Â = 0 (or unless A21 was zero to begin with). In this setting the method proposed

returns Â = 0.

We remark that in the (rare) case in which the algorithm returns Â = 0, an alternative

and preferable approach is to search for an approximation of size k−1 or k+r. This way, the

multiplicity r̄ of the new singular number is such that r̄ < n
2
, and the system in Equation 4.27

is underdetermined.

Theorem 4.2.3 provides us with a way to compute the coefficients of the function ψ solving

Theorem 2.4.7. It is important to notice that the WFA Â is not the best approximation.

Intuitively, the problem is that it is potentially too big and not necessarily irredundant.

From the AAK theorem we know that the optimal approximation corresponds to a bounded

Hankel operator, so the resulting WFA has to be irredundant. We need to “extract” from

Â a smaller WFA of size k. We do this by extracting the component of the function ψ that

belongs to the negative Hardy space.

4.2.4 Extracting the Rational Component

The objective of this section is to “isolate” the function g ∈ Rk, i.e. the rational component

of ψ. To do this, we study the position of the poles of ψ. In fact, we know from Theorem 2.4.4

that the poles of a strictly proper rational function lie inside the unit disc. As noted before,

the key to solving our problem is the way we parametrized the functions. We defined ψ so
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that its poles correspond to the eigenvalues of Â. Therefore, we study the eigenvalues of Â

using the following auxiliary result from Ostrowski [OS62]. A proof of this theorem can be

found in [Wim73].

Theorem 4.2.4 ([OS62]). Let |Σ| = 1, and let P be a solution to the fixed point equation

X −AXA> = ββ> for the WFA A = 〈α,A,β〉. If A is reachable, then:

• The number of eigenvalues λ of A such that |λ| < 1 is equal to the number of positive

eigenvalues of P.

• The number of eigenvalues λ of A such that |λ| > 1 is equal to the number of negative

eigenvalues of P.

After a change of basis (that we detail in Section 4.3 with the approximation algorithm),

we can rewrite Â in block-diagonal form:

Â =

Â+ 0

0 Â−

 (4.28)

where the modulus of the eigenvalues of Â+ (resp. Â−) is smaller (resp. greater) than one.

We then apply the same change of coordinates on α̂ and β̂.

We can finally find the rational component of the function ψ, i.e. the function g from

Corollary 2.4.7.2 necessary to solve that approximate minimization problem.

Theorem 4.2.5 ([BLP+21]). Let Â+, α̂+, β̂+ be as in Equation 4.28. The rational compo-

nent of ψ is the function g = α̂>+(z1− Â+)−1β̂+.

Proof. Clearly ψ = g + l, with l = α̂>−(z1 − Â−)−1β̂−, l ∈ H∞. To conclude the proof we

need to show that g has k poles inside the unit disc, and that therefore it has rank k. We

do this by studying the modulus of the eigenvalues of Â+.

Since E is minimal, Â is reachable by definition, so we can use Theorem 4.2.4 and solve

the problem by directly examining the eigenvalues of −ΣR. From the proof of Theorem 4.2.3
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we have−ΣR = Σ(Σ2−σ2
k1), where Σ is the diagonal matrix having as elements the singular

numbers of H different from σk. It follows that −ΣR has only k strictly positive eigenval-

ues, and Â has k eigenvalues with modulus smaller than 1. Thus, Â+ has k eigenvalues,

corresponding to the poles of g.

4.2.5 Solving the Approximation Problem

Now that we have found the rational function g, a symbol for the operator that solves

Theorem 2.4.6, we need to find the parameters of Âk, the WFA corresponding to the optimal

approximation. These are directly revealed by the expression of g, due to the way we

parametrized the function.

Theorem 4.2.6. Let A = 〈α,A,β〉 be a minimal WFA with n states over a one-letter

alphabet. Let A be in its SVA form. The optimal spectral-norm approximation of rank k is

given by the WFA Âk = 〈α̂+, Â+, β̂+〉.

Proof. From Corollary 2.4.7.2 we know that g is the rational function associated with the

Hankel matrix of the best approximation. Given the correspondence between the Fourier

coefficients of g and the entries of the matrix, we have:

g = α̂>+(z1− Â+)−1β̂+ =
∑
k≥0

α̂>+Âk
+β̂+z

−k−1 =
∑
k≥0

f̄(k)z−k−1 (4.29)

where f̄ : Σ∗ → R is the function computed by Âk and α̂+, Â+, β̂+ are the parameters.

4.2.6 Example

We consider the WFA in SVA form introduced in Example 2.2.5:

A =


0.579 0.461 0.046

−0.461 −0.192 0.225

0.046 −0.225 −0.387

 , α =


1.650

−0.851

0.038

 , β =


1.650

0.851

0.038

 ,
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Note that A has spectral radius strictly smaller than 1, having eigenvales:

λ1,2 = 0.0162324± 0.0297233i λ3 = 0.0324648. (4.30)

We want to find the optimal approximation of rank 2 in the spectral norm. According to

the partition in Equation 4.17, we have

P = Q =


4.67 0 0

0 1.79 0

0 0 0.12

 ,

so that σ2
2 = 0.12 and:

Σ =

4.67 0

0 1.79

 .

A11 =

 0.579 0.461

−0.461 −0.192

 , A1,2 =

0.046

0.225

 ,

A>2,1 =

 0.046

−0.225

 , A22 = −0.387

α1 =

 1.650

−0.851

 , β1 =

1.650

0.851

 , α2 = β2 = 0.038

Since α2 6= 0, we can use Equation 4.19 to find the coefficients of the WFA Â = 〈α̂, Â, β̂〉.
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We have: 
β̂ = −ÂA>21(β>2 )+

α̂ = Â>RA12(α>2 )+

Â(A>11 −A>21(β>2 )+β>1 ) = 1

β̂ = −Â

 0.046

−0.225

 (0.038)−1

α̂ = Â>


0.12 0

0 0.12

−
4.67 0

0 1.79


2
0.046

0.225

 (0.038)−1

Â


 0.579 0.461

−0.461 −0.192


>

−

 0.046

−0.225

 (0.038)−1

1.650

0.851


> = 1

so we get:

Â =

 0.578 0.178

−1.221 −0.169

 , α̂ =

 7.105

−1.579

 , β̂ =

0.353

0.474

 .

Now, we want to extract the rational component. To do so, we look at the modulus of

the eigenvalues of Â. We have:

λ1,2 = 0.204593± 0.278322i.

As we can see, both eigenvalues have modulus smaller than one. Following the notation

introduced in the previous section, we obtain: Âk = 〈α̂+, Â+, β̂+〉 = 〈α̂, Â, β̂〉.
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Algorithm 1: AAKapproximation

input : A minimal WFA A, with α2 6= 0, n states and in SVA form,
its Gramian P, a target number of states k < n

output: A WFA Âk with k states
1 Let α1,α2,β1,β2,A11,A12,A22,Σ be the blocks defined in Eq. 4.17

2 Let (α>2 )+ = α2

α>2 α2
, (β>2 )+ = β2

β>2 β2

3 Let R = σ2
k1−Σ2

4 Let Â = (A>11 −A>21(β>2 )+β>1 )−1

5 Let α̂ = Â>RA12(α>2 )+

6 Let β̂ = −ÂA>21(β>2 )+

7 Let Â = 〈α̂, Â, β̂〉
8 Let Âk ← BlockDiagonalize(Â)

9 return Âk

4.3 Algorithm

We now use the results obtained in the previous section to define Algorithm 1, that we call

AAKapproximation.

The algorithm takes as input a target number of states k < n, a minimal irredundant

WFA A n states and in SVA form, and its Gramian P. We assume α2 6= 0. If α2 = 0, it is

enough to substitute the Steps 4, 5, 6 with the analogues from Equation 4.20. As mentioned

in Section 4.1.1, the constraints on the WFA A to be minimal and in SVA form are not

essential. In fact a WFA with n states can be minimized in time O(n3) [BR11], and the SVA

computed in O(n3) [BPP19]. The algorithm applies the results of Theorem 4.2.3 in order

to derive the parameters of the optimal WFA. The output of the algorithm is the WFA Âk

corresponding to the unique optimal spectral-norm approximation of A.

Block Diagonalization The algorithm involves a call to Algorithm 2, BlockDiagonalize.

This algorithm corresponds to the steps necessary to derive the WFA Âk associated to the

rational function g. One way to solve the problem is to compute the Jordan form of the

matrix. Unfortunately, this problem is ill-conditioned, so it is not suitable for our algorithmic

purposes. Following an idea of Glover [Glo84], we compute the Schur decomposition, i.e.
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we find an orthogonal matrix U such that the matrix U>ÂU is upper triangular, with the

eigenvalues of Â on the diagonal. We obtain:

T = U>ÂU =

Â+ Â12

0 Â−

 (4.31)

where the eigenvalues are arranged in increasing order of modulus, and the modulus of those

in Â+ (resp. Â−) is smaller (resp. greater) than one. To transform this upper triangular

matrix into a block-diagonal one, we use the following result.

Theorem 4.3.1 ([Rot52]). Let T be the matrix defined in Equation 4.31. The matrix X is

a solution of the equation Â+X−XÂ− + Â12 = 0 if and only if the matrices

M =

1 X

0 1

 , and M−1 =

1 −X

0 1

 (4.32)

satisfy:

M−1TM =

Â+ 0

0 Â−

 , (4.33)

where T is the matrix defined in Equation 4.31.

Setting Γ =

(
1k 0

)
we can now derive the rational component of the WFA:

Â+ = ΓM−1U>ÂUMΓ> (4.34)

α̂+ = ΓM>U>α̂ (4.35)

β̂+ = ΓM−1U>β̂. (4.36)

The algorithm BlockDiagonalize corresponds to the implementation of this procedure, and

Step 2 can be performed using the Bartels-Stewart algorithm [BS72].
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Algorithm 2: BlockDiagonalize

input : A WFA Â
output: A WFA Âk wit ρ < 1

1 Compute the Schur decomposition of Â = UTU>, where |T11| ≤ |T22| ≤ . . .

2 Solve Â11X−XÂ22 + Â12 = 0 for X

3 Let M =

(
1 X
0 1

)
and M−1 =

(
1 −X
0 1

)
4 Let Γ =

(
1k 0

)
5 Let Â+ = ΓM−1U>ÂUMΓ>

6 Let α̂+ = ΓM>U>α̂

7 Let β̂+ = ΓM−1U>β̂

8 Let Âk = 〈α̂+, Â+, β̂+〉
9 return Âk

4.3.1 Computational Cost

The running time of BlockDiagonalize with input a WFA Â with (n− r) states is thus in

O((n− r)3), where r is the multiplicity of the singular value considered. The running time

of AAKapproximation for an input WFA Â with n states is in O((n− r)3). In particular, it

is possible to analyze the cost associated to each step of the algorithms [TBI97]:

• The product of two n × n matrices can be computed in time O(n3) using a standard

iterative algorithm.

• The inversion of a n × n matrix can be computed in time O(n3) using Gauss-Jordan

elimination.

• The computation of the Schur decomposition of a n × n matrix can be done with a

two-step algorithm, where each step takes O(n3), using the Hessenberg form of the

matrix.

• The Bartels-Stewart algorithm applied to upper triangular matrices to find a matrix

of size m× n takes O(mn2 + nm2).
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4.4 Error Analysis

Thanks to the use of AAK theory, the method outlined in the previous sections is guar-

anteed to return the rank k optimal spectral-norm approximation of a WFA satisfying our

assumptions, and the singular number σk provides the error. As noticed before, since the

Hankel matrix has finite rank and we can derive the Gramian matrices of the WFA, the sin-

gular number corresponding to the error can be computed precisely, even though the Hankel

matrix is infinite.

Similarly to the case of SVA truncation [BPP19], owing to the ordering of the singular

numbers, the error decreases when k increases, meaning that allowing Âk to have more states

guarantees a better approximation of A. Note that the solution we propose is optimal in

the spectral norm, but it might not be the case in other norms. Nonetheless, we have the

following bound between `2 norm and spectral norm.

Theorem 4.4.1. Let A be a minimal WFA computing f : Σ∗ → R, with matrix H. Let Âk

be its optimal spectral-norm approximation, computing g : Σ∗ → R, with matrix G. Then:

‖f − g‖`2 ≤ ‖H−G‖ = σk. (4.37)

Proof. Let e0 =

(
1 0 · · ·

)>
, f : Σ∗ → R, g : Σ∗ → R with Hankel matrices H and G,

respectively. We have:

‖f − g‖`2 =

(
∞∑
n=0

|fn − gn|2
)1/2

= ‖(H−G)e0‖`2

≤ sup
‖x‖`2=1

‖(H−G)x‖`2

= ‖H−G‖ = σk

where the second equation follows by definition and by observing that matrix difference is
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computed entry-wise.

4.5 Relaxing the Spectral Radius Assumption

In this section we examine the possibility of extending our method by relaxing one of the

hypothesis made at the beginning of the chapter. In particular, we consider a WFA over a

one-letter alphabet with ρ(A) 6= 1, i.e. not necessarily irredundant. In this case, the method

can be extended and the quality of the approximation can be estimated, but the result is

not optimal in the spectral norm. Once again, we draw inspiration from the control theory

literature, where some theoretical work has been done to study an analogous approach for

continuous time systems and their approximation error [Glo84].

The key idea is to block-diagonalize A like we did in Section 4.2.4. This way, we obtain

two components, A+ and A−, with the property that ρ < 1 and ρ > 1, respectively. We

tackle each component separately. The case of A+ = 〈α+,A+,β+〉, the component having

ρ(A) < 1, can be dealt with in the way presented in the previous sections. This means

that we can find an optimal spectral-norm approximation of the desired size for A+. Then,

we can consider the second component, A− = 〈α−,A−,β−〉. In this case, we apply the

transformation

zj−1 7→ z−j for j ≥ 1

to the symbol φ′(z) associated to A−. Then, the function

φ′(z−1) =
∑
k≥0

α>−Ak
−z

kβ− = α>−(1− zA−)−1β− (4.38)

is well defined, as the series converges for z with small enough modulus. The use of this

transformation allows us to obtain a function having poles only inside the unit disc, and to

apply the method presented in this chapter. We remark that in this case an important choice

to make is the size of the target approximation of A−, as it can influence the quality of the
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result. Analyzing the effects of this parameter on the approximation error is an interesting

direction for future work, both on the theoretical and experimental side.

4.6 Discussion

In this chapter, we proposed an algorithm based on AAK theory for the approximate mini-

mization problem of weighted finite automata with real weights over a one-letter alphabet.

Leveraging the results from operator theory and complex analysis presented in Section 2.4,

we constructed the best possible approximation to an automaton given a bound on the size.

In particular, under the assumption that the WFA is irredundant, we provided theoretical

guarantees and an algorithm to find the parameters of the best WFA approximation in the

spectral norm. Moreover, we provided bounds on the error in the spectral and `2 norms. The

proposed method applies to real WFAs A = 〈α,A,β〉, defined over a one-letter alphabet,

with the property that the spectral radius of the transition matrix is strictly smaller than 1.

One-letter alphabets have proven to be of independent interest when dealing with automata,

as in this case the classes of regular and of context-free languages collapse [Pig15]. While this

setting is certainly restricted, we believe that this result constitutes a first fundamental step

towards optimal approximation. Furthermore, to the best of out knowledge it constitutes

the first attempt to use AAK techniques in the setting of formal languages and automata

theory. These methods have been very fruitful in related areas like control theory and signal

processing, so we think that automata theory can also benefit from it. The result presented

in this chapter highlights and strengthens the interesting connections between functional

analysis, automata theory and control theory, unifying tools from different domains in one

formalism.



Chapter 5

Black-Box Models for Language

Modelling on One-Letter Alphabets

In this chapter, we study the approximate minimization problem of black boxes comput-

ing a function f ∈ `1 over a one-letter alphabet. Note that this setting encompasses the

case of models trained for language modelling on sequential data over a one-letter alphabet.

Analogously to what done in the previous chapter, we start by formulating the problem and

emphasizing the hypotheses necessary to solve it. In Section 5.2 we outline the idea behind

the approximate minimization method, and we propose the application of a well-known re-

sult in signal processing to test for compactness [CL94]. Then, in Section 5.3, we present

and justify the building blocks of the proposed approximation algorithm. We end the chap-

ter with an analysis of the approximation error (Section 5.4) and with concluding remarks

(Section 5.5). The content of this chapter was presented in the paper “Extracting Weighted

Automata for Approximate Minimization in Language Modelling” [LPR21], that was pub-

lished and presented at ICGI 2020/2021 (the 15th International Conference on Grammatical

Inference).

65
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5.1 Problem Formulation

To properly formulate our problem we need a few preliminary definitions. We start by

introducing the notion of asymptotic sequence. We say that the sequence of matrices {Gi
k}i≥0

is an asymptotic sequence for the matrix Gk, if the corresponding sequence of operators

{Gi
k}i≥0 converges to the operator Gk in the operator norm, i.e., if:

lim
i→∞

∥∥Gk −Gi
k

∥∥ = 0. (5.1)

In this case, we can use the notation Gi
k → Gk.

Let |Σ| = 1, Σ∗ = N. We consider a black-box model trained for language modelling and

computing a function f : N → R, with Hankel matrix H corresponding to the operator H.

Let k be the target size of the approximation, and n > k. We denote with Gk the optimal

approximation of H of rank k. We say that a WFA Ânk with k states is an asymptotically-

optimal (n, k)-approximation for a LM black box if the Hankel matrix Gn
k of Ânk belongs

to an asymptotic sequence for Gk. In the notation, we will omit the specification (n, k)

whenever the parameters are clear from the context. We remark that this asymptotically-

optimal analysis does not return a unique optimal approximation, ad the result is dependent

on the chosen converging sequence.

Note that, if {σj}j≥0 are the singular numbers of H, for an asymptotic sequence we have:

lim
i→∞

∥∥H −Gi
k

∥∥ = σk. (5.2)

Alternative Formulation

We briefly remark that the approximate minimization problem can be formulated in a differ-

ent way, that was explored by Kung and Lin [KL81] in the context of linear time-invariant

dynamical systems. In the problem definition illustrated above, we fixed the size of the

approximation, and searched for the solution producing the smallest possible error. Alter-
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natively, we could have set the tolerance ρ allowed for the approximation error, with the

objective of finding the smallest minimal WFA such that the spectral norm of the approxi-

mation error is smaller than ρ. In this case, if ρ ∈ (σk, σk−1), then the best approximation

has size at least k−1, and can be found following the same solution as the standard approx-

imation problem. Note that this formulation can be particularly interesting for applications.

In fact, it allows us to reduce the computational cost and minimize the system while having

control of the approximation error.

5.1.1 Assumptions

We list and justify our main assumptions.

Size of the Alphabet

Analogously to what done in the previous chapter, we restrict the setting to one-letter

alphabets. This restriction, necessary to apply the Fourier isomorphism and use AAK theory

(as noted in Section 3.2), is the main limitation of this approach.

Compactness of the Operator

The proof of Theorem 2.4.6 is constructive only for compact operators. We show in Sec-

tion 5.2.2 that compactness is automatically respected by black boxes for language mod-

elling (Theorem 5.2.2). Under these assumptions, the proposed algorithm can be applied to

any black-box model trained for language modelling on a one-letter alphabet, for example

RNNs [HS97] and transformers [VSP+17]. The necessary condition is actually less restric-

tive, and allows us to potentially apply the method beyond the task of language modelling:

if f is the function computed by the black box considered, it is enough that f ∈ `1.
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Rank of the Matrix

We assume that the rank r of H is infinite. The finite-rank problem encompasses the

case in which the black box is a WFA, or it is assumed to be computing a function that

could be recognized by a WFA. This case could be reformulated in the framework of the

algorithm illustrated in the previous chapter. In that case, it is important to make sure that

the WFA obtained using the spectral method from the Hankel matrix of the black box is

also computing a bounded function (by checking the property on the spectral radius of the

transition matrix). Note that the algorithm proposed in this chapter can be easily adapted

to finite-rank Hankel matrices. We require this additional assumption just to simplify the

exposition of our solution, which specifically extends the previous chapter in the case of

infinite-rank Hankel matrices. This is a clear improvement with respect to most of the works

in the literature, where the RNN or the black box is generally trained over a regular language

(therefore producing a finite-rank Hankel matrix).

5.2 Approximate Minimization

In this section, we present the theoretical details of the proposed method for approximate

minimization. We first outline our approach and provide an intuition of the asymptotic

method. Then, we analyze the problem of testing for compactness, and define asymptotic

sequences to link the approximate minimization task to AAK theory.

5.2.1 Outline

Given the Hankel matrix H of a black box, we would like to use Theorem 2.4.6 to find

the optimal approximation. When the rank is not finite, this might not be algorithmically

possible. For infinite-rank Hankel matrices, the asymptotically-optimal (n, k)-approximation

is the closest we can get to an optimal approximation. As a matter of fact, we can look at
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the at the sequence of finite rank operators {H i}i≥0 converging to H:

H0 H1 . . . Hn . . . H. (5.3)

We will show that H is a compact operator, so this sequence is guaranteed to exist by defini-

tion. Each element of the sequence has finite rank, therefore we can use AAK theory to find

its best approximation in the spectral norm. This way, we find the optimal approximation

Gi
k of size k of each finite-rank Hankel operator H i. Therefore, we obtain a second sequence

of operators {Gi
k}i≥0:

H0 H1 · · · Hn · · · H

↓ ↓ ↓ ↓

AAK AAK · · · AAK . . . AAK

↓ ↓ ↓ ↓

G0
k G1

k · · · Gn
k · · · Gk

(5.4)

If {Gi
k}i≥0 is an asymptotic sequence, then it is enough to search for the best rank-k ap-

proximation of Hn to find an asymptotically-optimal (n, k)-approximation.

In the next section, we study the convergence of asymptotic sequences. We prove that

a solution for the asymptotically-optimal problem can be obtained from Theorem 2.4.6, but

it is not unique, since the result is dependent on the chosen sequence {H i}i≥0. Nonetheless,

we show that we can get arbitrarily close to the optimal solution.

For an intuition of the problem formulation, we can think about the Hankel matrices

in terms of WFAs. Given a sequence of finite rank matrices {Hi}i≥0 converging to H, we

can associate to each of them a WFA (Theorem 2.4.4). Therefore we have a sequence of

WFAs of increasing size that “converges” to the LM black box. The matrix Gk of rank

k corresponds to the optimal approximation for H, i.e., it is the WFA Âk with k states

that best approximate the LM black box. Finally, the sequence of matrices Gi
k of optimal

approximations of rank k, corresponds to a second sequence of WFAs Âik, all having size
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k. When {Gi
k}i≥0 is an asymptotic sequence for Gk, the corresponding sequence of WFAs

“converges” to Âk.

We solve the approximation problem using the following steps:

1. Extract the Hankel matrix from the black box. Given a LM black box, we use it to fill

the entries of a truncated Hankel matrix Hn, which belongs to the sequence of finite

rank operators {H i}i≥0 converging to H.

2. Compute the optimal symbol ψ. The objective at this point is to derive the optimal

symbol. To do so, we apply the formula in Theorem 5.3.1.

3. Extract the rational component. We apply Theorem 2.4.4 and isolate the part of the

function with poles inside the unit disc using partial fraction decomposition.

4. Obtain the optimal approximation. We leverage the recursive structure of Hankel ma-

trices and use the rational function’s coefficients to fill the entries of the Hankel matrix

of the asymptotically-optimal approximation. Then, we use the spectral method to

extract a WFA corresponding to the Hankel matrix obtained through the previous

steps.

5.2.2 Testing for Compactness

In this section, we focus on the problem of establishing the compactness of the Hankel

operator associated to the LM black box. This is a necessary step, as compactness is required

in the constructive proof of Theorem 2.4.6 and Theorem 5.3.1. In the case of a finite rank

matrix, it is enough to test if f ∈ `2 [BPP19]. Then, the problem can be rewritten in terms

of finite matrices, the Gramians, and it is possible to find the exact error and an algorithm

returning the optimal approximation. In the infinite-rank case considered in this chapter,

this is not possible. Furthermore, there is no guarantee that the problem can be solved

algorithmically. Thankfully, a Hankel operator does not need to have finite rank in order to

be compact. We can see this in the following example.
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Example 5.2.1. We consider the Hankel operator associated to the matrix:

H =



1 1
22

1
32

. . .

1
22

1
32

1
42

. . .

1
32

1
42

1
52

. . .

...
...

...
. . .


.

The operator is bounded and compact even though it doesn’t have finite rank.

Therefore we need to tackle two important challenges. First, we need a new criterion

to test for compactness. Second, we need to find an alternative way to make our approach

algorithmic, since we cannot rely anymore on the Gramian matrices.

We address the first problem using the definition of compactness: if we can find a sequence

{H i}i≥0 of bounded and finite rank Hankel operators converging to H, then H is compact.

To start, we can consider the matrix of the LM black box, indexed using natural numbers

(we leverage the fact that the set of strings is isomorphic to N), so we have H(i, j) = f(i+j).

Then, we build by truncation a converging sequence. Let t ≥ 0, we consider the sequence of

Hankel matrices defined as:

Ht(i, j) =


f(i+ j) if i+ j ≤ t

0 otherwise

. (5.5)
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For example, the element at position n is:

Hn =



f0 f1 . . . fn−1 0 . . .

f1 . .
.

. .
. ...

... . .
.
. .
. ...

fn−1 . .
. ...

0 . . . . . . . . . 0

...
. . .


. (5.6)

In the following theorem we prove that the sequence converges.

Theorem 5.2.2. Let |Σ| = 1. Let f : N → R be the function computed by a black box for

language modelling, and let H be its Hankel matrix. Let {Ht}t≥0 be the sequence of matrices

defined in Equation 5.5. Then, since f ∈ `1, we have that the sequence of the corresponding

Hankel operators {H t}t≥0 converges to H.

Proof. Let f : N→ R be the function computed by the black box. We have:

∥∥H −H t
∥∥ ≤ ∥∥∥∥∥

∞∑
i=0

f(i)z−i−1 −
t∑
i=0

f(i)z−i−1

∥∥∥∥∥
∞

(5.7)

≤

∥∥∥∥∥
∞∑

i=t+1

f(i)z−i−1

∥∥∥∥∥
∞

(5.8)

≤
∞∑

i=t+1

|f(i)| (5.9)

where the first inequality follows from Theorem 2.4.3. Since the black box is trained for

language modelling, we have that
∑

k≥0 |f(k)| = 1. Thus, f ∈ `1, and it follows directly that

H t → H.

We remark that the proof relies only on f ∈ `1, so the result can hold for tasks different

from language modelling.

We have found a sequence of finite-rank operators converging to H, therefore the operator
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is compact. Note that the definition of truncated sequence presented in Equation 5.5 directly

addresses the question of finding an algorithmic implementation for the problem. In fact,

this definition reduces each matrix to a non-zero finite sub-block. This allows us to discard

the infinite zero-part and to work only with the n× n sub-block of the matrix Hn.

5.2.3 Asymptotic Sequences

The last theoretical step to address is the continuity of the approximation: if Gk and Gi
k

are the optimal approximations of H and of H i, respectively, we want {Gi
k}i≥0 to be an

asymptotic sequence for Gk, so that the sequence of operators {Gi
k}i≥0 converges to Gk. This

problem has been extensively studied, in the context of signal processing, in the fundamental

work of Chui and Li [CL94, CLW91]. We recall the following result.

Theorem 5.2.3 ([CL94]). Let H be a bounded Hankel operator, {σi}i≥0, its singular num-

bers. Suppose to have a sequence {H i}i≥0 of bounded Hankel operators converging to H.

Let Gk and Gi
k be the unique optimal approximations of rank k of H and of H i for any i,

respectively. If σk−1 6= σk, then the sequence {Gi
k}i ≥ 0 converges to Gk.

This theorem gives us conditions under which we can solve the approximation problem

(at least asymptotically) for the black box. To apply the theorem, we need to test that the

property σk−1 6= σk on the singular numbers of the bounded Hankel operator H holds when

k is the size of the best approximation. This condition cannot be tested experimentally, since

we don’t have access to the infinite Hankel matrix H, and we cannot compute precisely the

singular numbers. Instead, we can address the problem by using arguments from random

matrix theory, using the relation between singular numbers and eigenvalues. In fact, a

random matrix has only distinct eigenvalues with probability one [TV14]. Therefore, up to

at worst a small perturbation, we can view any Ht for t > 0 as a random matrix having

only simple singular values with probability one, and this property holds (in the limit) also

for H [vNW93, TV14]. Compact operators have a simple spectrum after arbitrarily small
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perturbations, and the spectrum of symmetric matrices is very stable, so the quality of

the result is not affected [HM94, Kat13, Tao12]. In practice, for most settings the Hankel

matrix H will satisfy the condition of Theorem 5.2.3 with probability one. This is the case,

for example, of RNNs trained using a gradient-based method with a random initialization.

Thus, it remains to consider the case of an adversarial setting, in which the black box to

approximate is specifically engineered to have σk−1 = σk. To address this situation we can

add some random noise to the matrix H post training. The matrix of noise N has to be

chosen appropriately, if we want to apply our method. In particular, we need to preserve

compactness and the Hankel property. This means that N needs to be a Hankel matrix, and

that H +N needs to be a compact operator. For instance, we can choose N to be a Hankel

matrix, with first row N(0, j) sampled uniformly in the interval [−(j + 2)−p, (j + 2)−p], with

p ≥ 2 fixed, so that the operator N is compact. This way, we are guaranteed to have a

random Hankel matrix, and the condition for compactness is respected. Moreover, for every

ε > 0, we can find an exponent p ≥ 2 such that ‖N‖ ≤ ε, so the perturbation can be chosen

to be arbitrarily small. Thus, H+N is a random matrix corresponding to a compact Hankel

operator, and satisfies the conditions of Theorem 5.2.3 with probability one. We will address

the additional error due to small perturbations in Section 5.4.

We are finally ready to show that if Hn belongs to the sequence of bi-infinite truncation

Hankel matrices {Ht}t≥0 introduced in Equation 5.5, then by solving the problem described

by Theorem 2.4.6 for Hn we can find an asymptotically-optimal (n, k)-approximation.

Theorem 5.2.4. Let H and Hn be as above, and assume σk 6= σk−1. If Gn
k is the optimal

approximation of Hn according to Theorem 2.4.6, then a WFA having Hankel matrix Gn
k is

an asymptotically-optimal (n, k)-approximation, and we have:

σk ≤ ‖H−Gn
k‖ ≤ σk + 2

(
1−

n∑
i=0

f(i)

)
. (5.10)

Proof. Let σnk be the singular number k + 1 of the operator Hn, and let Gn
k be the optimal
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approximation described by Theorem 2.4.6, i.e.:

‖Hn −Gn
k‖ = σnk .

We have:

‖H−Gn
k‖ ≤ ‖H−Hn‖+ ‖Hn −Gn

k‖

= ‖H−Hn‖+ σnk .

From Theorem 3.1.1 we know that ‖H−Gn
k‖ ≥ σnk . On the other hand, using Lemma B.2.1

and Cauchy’s interlace theorem [Hwa04] (both recalled in Appendix B.2), we obtain:

σnk ≤ σk + ‖H−Hn‖.

It follows that:

σk ≤ ‖H−Gn
k‖ ≤ σk + 2‖H−Hn‖. (5.11)

Now, Hn belongs to the sequence of truncation matrices {Ht}t≥0, and the sequence converges

to H (Theorem 5.2.2). Since σk 6= σk−1, the conditions of Theorem 5.2.3 hold. Therefore,

the sequence of matrices of best approximations {Gt
k}t≥0 is an asymptotic sequence for Gk,

and Gk
n belongs to it. Thus, the WFA having matrix Gk

n is an asymptotically-optimal

(n, k)-approximation, and Equation 5.2 holds. Moreover, from Equation 5.9, we have:

‖H−Gn
k‖ ≤ σk + 2‖H−Hn‖ ≤ σk + 2

∞∑
i=n+1

f(i) = σk + 2

(
1−

n∑
i=0

f(i)

)
. (5.12)

The bound clearly shows that, as n increases, we approach the optimal approximation.
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5.3 Algorithm

In this algorithm, we propose to use an alternative version of AAK theorem, from Chui and

Chen [CC97, Theorem 4.7]. Leveraging this result it is possible to find a symbol for the best

approximation. We first recall that a Toeplitz matrix is a matrix T with entries defined by

T(j, k) = tj−k for j, k ≥ 0:

T =



t0 t−1 . . . t−n t−n+1 . . .

t1 t0 t−1

. . . t−n
. . .

t2 t1 t0
. . .

. . .

...
. . .

. . . t−1

...
. . .


. (5.13)

Theorem 5.3.1 ([CC97]). Let {ξk,ηk} be any σk-Schmidt pair for H. We consider a bi-

infinite upper triangular Toeplitz matrix T, defined as follows:

• T has only zeros on the main diagonal

• the first row is defined by T(0, k) = H(0, k − 1) for k > 0

• the remaining entries are defined by T(j, k) = T(j + 1, k + 1).

Let z =

(
1 z z2 . . .

)>
where z is the complex variable. Then, the rational function r(z)

corresponding to a symbol for the best approximation of rank k is:

r(z) = P−
(

z>Tξ

z>ξ

)
. (5.14)

To simplify the notation across this section, we set fi = f(i). We recall the two bi-infinite
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matrices necessary to compute the best approximation:

Hn =



f0 f1 . . . fn−1 0 . . .

f1 . .
.

. .
. ...

... . .
.
. .
. ...

fn−1 . .
. ...

0 . . . . . . . . . 0

...
. . .


, T =



0 f0 . . . fn−1 0 . . .

...
. . .

. . . fn−1

...
. . .

. . .
...

...
. . . f0

0 . . . . . . . . . 0

...
. . .


. (5.15)

While theoretically we are dealing with infinite matrices, the truncation proposed allows us

to work with finite sub-blocks of them. For example, we consider only the n × n sub-block

of Hn, but we will still denote it with Hn for the sake of simplicity. Analogously, if z and T

are the infinite vector and matrix defined in Theorem 5.3.1 for H, in the algorithm we only

consider the truncation:

zn(i) = z(i), Tn(i, j) = T(i, j) for i, j < n, zn ∈ Rn×1,Tn ∈ Rn×n (5.16)

where the discarded entries are irrelevant, being multiplied by zeros in the infinite case.

Note that, since we are assuming that H has infinite rank (see Section 5.1.1), the trunca-

tion Hn has full rank: if this was not the case, since Hn is the leading principal sub-matrix

of H, we would have r = rank(Hn) (it follows from a result of [Al’17], that we recall in

Appendix B.2).

The algorithm takes as input a black boxM trained for language modelling on a one-letter

alphabet, a target number of states k, the size of the truncation n > k, and a perturbation

matrix Nn defined as in Section 5.2.2, with Nn Hankel and Hn + Nn compact. After

obtaining the Hankel matrix of the black box and computing its singular values, we apply

Theorem 5.3.1 in order to find its symbol. The main challenge is then to extract the rational
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Algorithm 3: AAKmethod

input : A trained LM black box M of unknown rank,
a target number of states k, the size of the truncation n > k,
a perturbation matrix Nn as in Section 5.2.2

output: A WFA Ânk of size k

1 Let H̃n ← GetHankel(M, n,Nn)

2 Let σnk , ξn ← ComputeEigenpair(H̃n)

3 Let Tn, zn defined as in Equation 5.16

4 Let ψ = (zn)>Tnξn

(zn)>ξn

5 Let r ← ExtractRational(ψ)
6 Let Gn

k ← RecoverMatrix(r,k + 1)

7 Let Ânk ← SpectralMethod(Gn
k,B)

8 return Ânk

component. We already tackled this problem in Chapter 4, but since in this case we don’t

want to extract the parameters of the WFA, we will follow a different approach. We use

the method of partial fraction decomposition and obtain a rational function. It is then

immediate to compute the entries of the corresponding Hankel matrix, and to use spectral

learning to extract a WFA from it. The algorithm then returns a WFA Ânk having k states,

with Hankel matrix corresponding to an asymptotically-optimal (n,k)-approximation of H.

To better understand Algorithm 3, we analyze in detail its building blocks.

5.3.1 From Black Box to Hankel matrix

The step of extracting a Hankel matrix from a given black-box model corresponds to the

first two lines of the algorithm and to the functions GetHankel and ComputeEigenpair.

Following [AEG18], we consider a black box trained for language modelling, and use it to

fill the entries of a Hankel matrix Hn. In particular, we query the black box on each string

of length smaller than n, and fill the first line in Hn with the answer fn. Since the Hankel

property holds, we obtain a n × n Hankel matrix Hn, having entries fn on the first n anti-

diagonals, and zeroes everywhere else. As mentioned in Section 5.2.3, we add a perturbation

matrix Nn to Hn, which can be set to zero when the singular numbers σk and σk−1 of H
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are known to be distinct. The output of the function GetHankel is the perturbed matrix

H̃n = Hn + Nn.

Now that we have the Hankel matrix, we want to compute a Schmidt pair, since it will

be needed in the next step of the algorithm. The function ComputeEigenpair takes the

matrix H̃n and returns the singular number σnk of H̃n, and a corresponding singular vector.

Since H̃n has finite rank and is symmetric, its singular numbers are the absolute values of

the eigenvalues, i.e. σnk = |λk|. Analogously, given the eigenvalue λk and a corresponding

eigenvector vnk , a Schmidt pair is given by (ξn,ηn), with ξn = vnk , ηn = sgn(λk)v
n
k , and

sgn(λk) = λk/|λk|. Once again, while the actual eigenvectors should be infinite, we consider

only the first n coordinates.

5.3.2 Applying AAK Theory

Now we have obtained a singular vector, and we can compute the matrix Tn and the vector

zn (defined in Equation 5.16). These are all the elements necessary to apply AAK theory,

as we can compute the function ψ by applying directly the formula of Theorem 5.3.1.

Once we have obtained ψ, the objective becomes to extract its rational component.

From Theorem 2.4.4 we know that finite-rank Hankel matrices correspond to strictly proper

rational functions, with all the poles inside the complex unit disc. From Equation 5.14 in

Theorem 5.3.1 we obtain, before applying the projection, a function ψ = a
b
. We are only

interested in r = P−ψ, as ψ might contain poles outside the unit disc. By definition, the

poles of ψ correspond to the zeros of b, so we can isolate the part of the function with poles

inside the unit disc using partial fraction decomposition. This method allows us to rewrite

the rational function ψ = a
b

as:

ψ =
a

b
= c+

∑
i

ai
bi
, (5.17)

where each ai
bi

is a strictly proper rational function, and each factor bi of the denominator is
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a power of an irreducible polynomial. Now, we can analyze the position of the zero of each

bi: if it is outside or on the complex unit disc, then we discard the term ai
bi

. The output of

ExtractRational is the sum of the remaining terms, corresponding to the component in H2
−

of ψ. We remark that the general problem of computing a partial fraction decomposition

may be ill-conditioned, in particular in presence of high-order poles [You83]. Nonetheless, in

the setting analyzed in this chapter, the function considered is unlikely to have high order

poles (this can be shown following the same random-matrix approach shown in the previous

section). Therefore, the partial fraction decomposition can be computed efficiently, with the

naive implementation having complexity O(n3) for a fraction with n poles [KT77, MYW14].

Using ExtractRational we obtained a strictly proper rational function:

r =
p

q
, where p =

k∑
i=1

piz
k−i, q = zk +

k∑
i=1

qiz
k−i, (5.18)

and p and q are relatively prime, with q having degree k. As seen in Section 2.4, if

r =
∑

n≥0 gnz
−n−1, then Gn

k(j, k) = gj+k. The coefficients gi of the Hankel matrix can

be recovered from the following set of equations, obtained from the constructive proof of

Theorem 2.4.4 [CC97]:



g0 = p1

g1 = p2 − g0q1

. . .

gk−1 = pk − gk−2q1 − · · · − g0qk−1


gk +

∑k
i=1 qigk−i = 0

gk+1 +
∑k

i=1 qigk+1−i = 0

. . .

. (5.19)

These equations form a linear system, which can be easily solved to derive the matrix Gn
k of

rank k having entries Gn
k(i, j) = gi+j. It is important to note that we don’t need to compute

all the coefficients of the matrix in order to extract a WFA using the spectral method. We

show in the next paragraph that the first k+ 1 coefficients are enough to retrieve the WFA.
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5.3.3 From Hankel Matrix to WFA

In this last block we call the function SpectralMethod to extract a WFA from the Hankel

matrix computed in the previous step. In particular, we use the function to recover the

minimal WFA Ânk = 〈α,A,β〉 with k states computing the function g : Σ∗ → R such that

Gn
k(i, j) = gi+j. We use the spectral method outlined in Section 2.2. The first step of the

algorithm is to select a prefix-closed and complete basis B. As noted before, since we are

working with a one-letter alphabet, the Hankel matrix Gn
k is symmetric. In this case, if

Gn
k has rank k, then the size of the biggest leading principal submatrix is k × k [Al’17].

Consequently, the natural choice for B = (P ,S) is to have P = S, with P containing

all the strings having size strictly smaller than k. Following the notation of Section 2.2,

Hε corresponds to the k × k leading principal submatrix of Gn
k , and hP,ε, hε,S are its first

column and row, respectively. Finally, Ha is the sub-block of Gn
k having the same rows

as Hε, and the columns obtained by shifting each individual column of Hε by one column.

Using Equation 2.6 we obtain the WFA Ânk .

5.3.4 Computational Cost

The running time of the algorithm AAKmethod with input a target number of states k, and

size of the truncation of the Hankel matrix n > k is O(n3). In particular, it is possible to

analyze the cost associated to each step of the algorithms [TBI97]:

• Given the structure of the Hankel matrix, the cost of filling the truncation of the Hankel

matrix in Line 1 of the algorithm is O(n).

• The cost of computing the singular value and the singular vector in Line 2 is at most

O(n3).

• The product of two n× n matrices can be computed in time O(n3).
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• The partial fraction decomposition in Line 5 can be computed efficiently, with the naive

implementation having complexity O(n3) for a fraction with n poles [KT77, MYW14].

• Solving a linear system of k + 1 equations (Line 6) has complexity O((k + 1)3).

• Given the matrix Gn
k of rank k, we have that the total running time of the spectral

algorithm in Line 7 is O(k3).

5.4 Error Analysis

As seen in the previous chapter, the minimal error that can be attained when doing spectral-

norm approximation is given by the singular number σk, where k is the size of the approxi-

mation. When the rank is not finite, we can only recover an asymptotically-optimal solution,

and the error cannot be exactly computed. We provide a bound on the error to estimate

the quality of the approximation with respect to the optimal case. From Equation 5.12, we

obtain the following bound:

‖H−Gn
k‖ ≤ σk + 2

(
1−

n∑
i=0

f(i)

)
. (5.20)

It is important to remark that, since f ∈ `1, we have information about the asymptotic

behaviour of the function. In particular, f(n) → 0 when n → ∞, meaning that “little”

probability is allocated to very long strings. Thus, a direct way to reduce the error is to

select the biggest possible n as size of the truncation matrix.

We can estimate the value of σk in terms of σnk using Lemma B.2.1 in Appendix B.2:

|σk − σnk | ≤ 1−
n∑
i=0

f(i). (5.21)

Note that σnk can be precisely computed, since it is the singular value of a matrix having

finite rank. An alternative way to reduce the error when additional information is available
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is to explore other types of truncations. The use of this approach to improve the convergence

rate has been explored by Chui and Li [CL94] in the context of signal processing.

Error with Noise

As discussed in Section 5.2.3, there are adversarial settings in which it is desirable to add a

matrix of noise N to the Hankel matrix H. When this happens, it is necessary to consider

the effect that this process has on the approximation error. While theoretically we would

like to add an infinite matrix of noise N, practically we consider the finite sub-block of the

infinite matrix Nn obtained by truncation in a way analogous to Equation 5.5. As before,

we consider only the n × n sub-block of Nn, but we still denote it with Nn for the sake of

simplicity. We obtain the following bound.

Theorem 5.4.1. Let Nn be the finite matrix of noise obtained by truncating the infinite

matrix N as defined above, and let G̃n
k be an asymptotically-optimal (n, k)-approximation of

the matrix H̃n = Hn + Nn. Then the approximation error is bounded by:

∥∥∥H− G̃n
k

∥∥∥ ≤ ‖H−Gn
k‖+ 2‖Nn‖. (5.22)

Proof. Let G̃n
k and σ̃nk be the optimal approximation and the (k + 1)-th singular number of

Hn + Nn, respectively. From Theorem 2.4.6 we have:

∥∥∥Hn + Nn − G̃n
k

∥∥∥ = σ̃nk . (5.23)
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Then:

∥∥∥H− G̃n
k

∥∥∥ ≤ ‖H−Hn −Nn‖+
∥∥∥Hn + Nn − G̃n

k

∥∥∥
≤ ‖H−Hn‖+ ‖Nn‖+ σ̃nk

≤ ‖H−Hn‖+ 2‖Nn‖+ σnk

≤ σk + 2‖H−Hn‖+ 2‖Nn‖

where we used Equation 5.23 in the second step, and in the last two steps we applied

Lemma B.2.1, with:

|σ̃nk − σnk | ≤ ‖Nn‖,

and

|σnk − σk| ≤ ‖H−Hn‖.

This means that the additional error depends only on the norm of the matrix of noise.

We have already remarked that this can be chosen to be arbitrarily small. Moreover, since

only a finite sub-block of Nn is different from zero, the norm can be precisely computed.

5.5 Discussion

In this chapter, we presented the approximate minimization problem for black boxes trained

for language modelling of sequential data over a one-letter alphabet. To solve this problem,

we applied the AAK theory for Hankel operators [AAK71] and continuity results from the

signal processing literature [CL94, CLW91]. Given a language model and a target size as in-

put, we provided an algorithm to extract a WFA corresponding to an asymptotically-optimal

approximation in the spectral norm. The algorithm can be applied to black box models like

RNNs or transformers. In particular, we showed that minimizing the approximation er-
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ror between a WFA and a black box model can be (asymptotically) solved optimally in a

tractable way. This is a first step towards developing provable approximation algorithms

for black-box models. Using this method, we can measure the distance between a given

RNN and the extracted WFA. This is particularly valuable, especially given that the general

equivalence problem between classes of WFAs and RNNs is undecidable [MdlH20].

The use of approximate minimization over regular extraction has the advantage that it

allows us to choose the size of the approximation and search the optimal WFA within this

constraint. This is particularly useful when the extracted WFA is used for interpretability.

In fact, every WFA has a graphical representation, but this is helpful only when the number

of states is small enough to actually make it readable. Moreover, approximate minimization

can be used to reduce the computational cost of the task considered, as the new model is

smaller and often easier to compute compared to the original one. Note that, even though

the spectral algorithm used in our approach does not guarantee that the extracted WFA

will preserve the probabilistic nature of the function considered, there are methods that can

partially address this issue [Bai11, AGH+14].

A point deserving further investigation is to understand how the approximation method

that we proposed performs with respect to more popular metrics, such as word error rate

or normalized discounted cumulative gain. This could help evaluate how meaningful (and

accurate) it is to use the spectral norm in an experimental setting, but the comparison is

possible only for multi-letter alphabets. Nonetheless, we think that the choice of the spectral

norm to evaluate the approximation error constitutes an interesting way to approach the

problem of approximating black boxes with WFAs.

Analogously to the case of WFAs presented in Chapter 4, the main drawback in this

approach remains the restriction to one-letter alphabets. As noted in the previous chapter,

the application of this rich mathematical theory has shown to be very effective in areas like

control theory or signal processing, and this work further highlights fruitful connections with

these fields.



Chapter 6

A Framework for Approximate

Minimization in the Multi-Letter Case

In this chapter, we focus our attention on models defined over multi-letter alphabets. In the

first section, we recall some fundamental results needed to understand our contribution. After

a brief overview of noncommutative function theory and Fock spaces, we briefly illustrate

the noncommutative version of the AAK theorem proposed by Popescu [Pop03]. Then,

we generalize the approach proposed in Chapter 3 and present a framework to reformulate

the approximate minimization problem in terms of multivariable noncommutative operator

theory in the Fock space. Moreover, we suggest a way to link the Hankel matrix of a WFA

to a symbol and a noncommutative rational function. Given the fundamental role played by

these two mathematical objects in constructing the optimal approximation in the one-letter

case, we consider this a fundamental step towards solving the problem in the multi-letter

setting.

Part of this chapter was included in the work “Towards an AAK Theory Approach to

Approximate Minimization in the Multi-Letter Case” [LPR22], presented at Learnaut 2022

(the 4th edition of the workshop Learning and Automata).
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6.1 Preliminaries

In this section, we recall some notions from noncommutative function theory. This is not a

comprehensive presentation of the subject, as we merely review the part of the theory that

is strictly needed to approach our problem. For a more thorough exposition we refer the

reader to [KVV14, KVV09, Pop93, BB19]. We follow the definitions and notations used by

Popescu [Pop89b, Pop89c, Pop95b, Pop89a, Pop06a, AP95, Pop10, Pop06b, Pop13, Pop92],

Ball and Bolotnikov [BB19] and Jury, Martin and Shamovich [JMS21b, JMS21a, Jur21]. We

start by recalling the definition of the Fock space. We then define NC rational functions and

NC Hankel operators, and conclude with a noncommutative analogue of the AAK theorem.

6.1.1 Fock Spaces and NC Functions

As a first step towards NC multivariable theory, we define NC functions. To gain some

intuition about the reasoning behind the definitions, we start by providing an overview

of noncommutative polynomials. It is natural to evaluate this type of polynomials over

matrices, so we don’t have to worry about preserving the noncommutative structure after

evaluation. This means that, for each polynomial p, we can actually consider a family

of polynomials pn, where n is the size of the matrices considered. For example given a

polynomial p, we denote with p2 the same polynomial evaluated over matrices of size 2× 2,

with p3 if it is evaluated over matrices of size 3× 3, and so on. Under this representation, a

NC polynomial defines a polynomial for each “level” determined by the size of the matrices.

Therefore, we can consider the graded set

Md =
∞⊔
i=1

Md
n (6.1)

where we denote with Mn the set of matrices of size n× n, and with Md
n the set of d-tuples

with elements in Mn. By interpreting n = ∞ as the level of bounded operators, we can

unify polynomials over matrices and over operators under the same formalism. A thorough
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description of the functional calculus for the noncommutative case can be found in the work

of Popescu [Pop95a]. In this thesis, we denote general tuples of NC variables with lower case

letters, instead of bold capital letters, even if they may take values over matrices. We use

bold capital letters or capital letters only when a result is stated specifically for matrices

or operators, respectively. When the tuple is composed by operators, we refer to it as row

operator.

To summarize, a NC polynomial is associated to a set of polynomials pn : Md
n →Mn for

n > 0, where each pn respects the size of the matrices. The levels of matrices are related, as

p respects direct sums. In fact, if we consider x ∈ Md
n, y ∈ Md

m, we can define their direct

sum to be the d-tuple with elements in Md
n+m:

xi 0

0 yi

 0 < i ≤ d. (6.2)

Another property of interest is conjugation by similarities. Let x = [x1, . . . , xn] ∈ Md
n and

let S be an invertible n× n matrix. We say that a polynomial p respects similarities if:

p(S−1xS) = S−1p(x)S, (6.3)

where S−1xS = [S−1x1S, . . . ,S
−1xnS].

More generally, we have the following definition.

Definition 6.1.1. A NC function f is a function defined on tuples of matrices of all sizes

such that f is graded and respects direct sums and similarities.

In general, NC functions are defined over NC sets, namely subsets of Md which are

graded, respect direct sums and are closed under unitary transformations. An example of a
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NC set is the NC row ball:

BdN =
∞⊔
i=1

Bdi ; Bdn = {x ∈Md
n :
∑
i

||xix∗i || < 1}. (6.4)

We fix a row structure on BdN.

Definition 6.1.2. A d-tuple of matrices (or of bounded operators) x = [x1, . . . xd] ∈ Md
n,

with xi ∈Mn, is a row contraction if

∑
i≤k

||xix∗i || < 1. (6.5)

The NC row ball consists of all the matrices (or operators) that are strict row contractions.

Alternatively one can consider as NC set the column ball, where we require
∑

i ||x∗ixi|| < 1,

or the polydisc, where each matrix is a contraction. While we won’t analyze this in detail,

NC functions have also interesting analytical properties. For example, if a NC function is

continuous at each level n, then each level is holomorphic. Moreover, if a NC function is

locally bounded, then each level is continuous (and therefore differentiable and holomorphic).

Similarly, one can introduce NC power series using the formalism provided by Fock spaces.

Let n ∈ N, we consider a n-dimensional Hilbert space Hn. We denote with H⊗kn the tensor

product of k copies of Hn, and H⊗0
n := C. We define the full Fock space as follows.

Definition 6.1.3. The full Fock space F 2 of Hn is the space:

F 2 = F 2(Hn) =
⊕
k≥0

H⊗kn = C⊕Hn ⊕ (Hn ⊗Hn)⊕ . . . . (6.6)

We can then consider the free monoid Fn on n generators g1, . . . gn, with identity element

g0. Given an element α ∈ Fn, with α = gi1gi2 · · · gik , we define its length by setting |α| = k,

and |α| = 0 if α = g0. Analogously, we can define an element of the Fock space eα =

ei1 ⊗ ei2 ⊗ · · · ⊗ eik and ei0 = 1. Note that B = {egi : gi ∈ Fn} is an orthonormal basis for
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the Fock space F 2. Therefore, it is easy to see that the Fock space over Cn is isomorphic to

the Hilbert space of square summable sequences indexed by Fn.

Example 6.1.1. We consider the free monoid generated by two elements F2, where the

generators are g1 = a and g2 = b. Then, the word α = aba is an element of F2, with

α = g1g2g1. The corresponding element in the Fock space F 2(H2) is eα = e1 ⊗ e2 ⊗ e1.

Note that we can define shift operators on the Fock space.

Definition 6.1.4. The left shift, also called left creation operator, Si : F 2 → F 2 is the

operator defined, for i = 1, . . . , d, by:

Si(eα) := ei ⊗ eα = eiα. (6.7)

The right shift, or right creation operator, Ri : F 2 → F 2 is the operator defined, for

i = 1, . . . , d, by:

Ri(eα) := eα ⊗ ei = eαi. (6.8)

Note that these noncommutative shift operators are row operators: S = (S1, . . . , Sd),

R = (R1, . . . , Rd).

The Fock space can be also identified with H2(Fn), a canonical NC analogue of the

Hardy space we defined on the unit disc. The elements of H2(Fn) are defined on the NC

open unit row ball BdN. Given a collection of n formal NC variables z = [z1, . . . , zn], with

zα := zi1 · zi2 · · · zik , we can consider an element f ∈ F 2 and represent it as a formal power

series:

f(z) =
∑
α∈Fn

f̂αz
α. (6.9)

We define the NC Hardy space as:

H2(Fn) =

{∑
α∈Fn

f̂αz
α :
∑
α∈Fn

||fα||2 <∞

}
. (6.10)
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We remark that alternatively, we could have defined the shift operators in the NC Hardy

space, interpreting them as multiplication for a noncommutative variable:

Si = MS
zi

Ri = MR
zi

(6.11)

where:

MS
zi
f(z) = zif(z) MR

zi
f(z) = f(z)zi. (6.12)

The convergence of a NC power series can be established by estimating its joint spectral

radius.

Definition 6.1.5. The joint spectral radius ρNC(z) of a NC power series f , with f(z) =∑
α∈Fn f̂αz

α, is defined as:

ρNC(z) = lim sup
N→∞

 sup∑
|α|=N |f̂α|2=1

∥∥∥∥∥∥
∑
|α|=N

f̂αz
α

∥∥∥∥∥∥
1/N
. (6.13)

Analogously, we could have defined the joint spectral radius for a d-tuple of n×n matrices

X = [X1, . . . ,Xd] as follows:

ρNC(X) = lim
2k

√
(X(1d ⊗ 1n)X∗)k. (6.14)

It is possible to show that X = [X1, . . . ,Xd] is a d-tuple of matrices with ρNC(X) < 1 if

and only if X is jointly similar to a strict row contraction in the NC row ball. Moreover, a

NC power series converges whenever ρNC < 1. Note that, given a strict row contraction z =

[z1, . . . zd] on a Hilbert space, the formal series defined in equation 6.9 converges absolutely

in the operator norm when evaluated at z [Pop06a]. Therefore, any f ∈ H2(Fn) can be

interpreted as a noncommutative function on strict row contractions in the NC open unit

row ball [KVV14], and the NC Hardy space H2(Fn) is the Hilbert space of all analytic free

NC functions on BdN having square-summable Taylor coefficients [JMS21b]. We remark that
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it is also possible to extend to the noncommutative case the definition of H∞, the space of

uniformly bounded analytic functions in the disk. In fact, in the NC setting, we can define

H∞NC as the algebra of uniformly bounded free NC functions in BdN.

H∞NC =

{
f ∈ Hol(BdN) :

∑
α∈Fn

f̂αz
α, sup

z∈BdN

||f(z)|| <∞

}
. (6.15)

It is worth recalling that in the one-variable case, the space H∞ can be alternatively viewed

as the algebra of all functions which multiply H2 into itself (multiplier algebra). This means

that given any f ∈ H∞ we can consider a bounded multiplication operator Mf : H2 → H2

such that Mfg = fg for any g ∈ H2. Mf is called multiplier. This reasoning extends to

the noncommutative setting, where we can similarly identify H∞NC with the algebra of left

multipliers of H2(Fn), i.e. the weakly-closed algebra generated by the left creation operators

on the full Fock space, and the identity [JMS21a, Pop06a, SSS18]. To avoid introducing too

many symbols and to keep the exposition clear, we will mostly use the first interpretation

of H∞NC, and make explicit the use of the multipliers notation only when it is not clear from

the context (mainly in Chapter 7).

6.1.2 NC Rational Functions

The free algebra of noncommutative polynomials over a field K admits a universal division

ring of fractions [Coh95]. In particular, we have the following definition:

Definition 6.1.6. A NC rational expression is any syntactically valid expressions in-

volving several NC variables, scalars from K, the operations +, ·, −1 and the parentheses.

An important challenge in defining rational functions is to decide if two rational expres-

sions represent the same functions. There are several approaches to deal with this challenge,

but the most common approach is to define NC rational functions in the following way.

Definition 6.1.7. A NC rational function is an equivalence class between rational ex-

pressions, where we say that r1 and r2 belong to the same equivalence class if r1 can be
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transformed into r2 by algebraic manipulations.

Note that dividing for zero is not a valid operation, and deciding whether or not a given

rational expression (or rational function) is zero might not always be obvious (for example,

when dealing with nested inversions).

Definition 6.1.8. The domain of a rational expression r is the set of all the tuple of

matrices X for which r(z) is defined. The domain of a NC rational function is the union of

the domains of its rational expressions.

We remark that Definition 6.1.7 is equivalent to requiring that two rational expressions

r1 and r2 give the same result when evaluated over matrices of arbitrary size belonging to

the intersection of their domains [HMS17]. In this thesis we are concerned with applying

rational functions to operators belongings to some fixed algebra. It is not trivial that being

zero when evaluated on the division ring of NC rational functions directly implies also being

zero when applied to operators. For example, we could have different rational expressions

representing the same rational functions that don’t agree when evaluated over the same op-

erator. Thankfully, in this thesis we will only work with the weakly-closed algebra generated

by the left creation operators over the Fock space. In this setting, we don’t have to worry

about this issue, and we can assume that this operation is well defined [HMS17, Coh95].

It is also important to remark that, unlike the commutative case, a NC rational function

does not admit a canonical coprime fraction representation [KVV09]. Therefore, it is of

paramount importance to find a “canonical” way to represent NC rational functions. A

subset of NC rational functions particularly relevant in our analysis is the class or regular

rational functions, i.e. functions that contains zero in their domain. An important property

of rational functions in the classical (commutative) Hardy space H2 is that if a rational

function r is regular near zero and can be represented as power series having square-summable

coefficients, then it cannot have any poles in the closed unit disk, and is therefore regular

in a disk of radius greater than one. These facts extend naturally when the NC variable
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is defined on the multivariable row ball, but do not generalize to the NC polydisk [Sch61,

Coh95, JMS21a]. Interestingly, the main tools used to study regular NC rational functions

come from control theory and from the theory of formal languages [Fli74, Ber79, Sch61].

In fact, it is a well known result from realization theory [KPV17] that every regular NC

rational function can be represented in terms of matrices of linear polynomials, and admits

a minimal realization of size n:

r(z) = c∗L−1
A (z)b (6.16)

where Aj are square matrices of size n, b, c are vectors of size n and LA(z) is a linear pencil

(or resolvent)

LA(z) = 1−
∑

Ajzj. (6.17)

We have chosen this notation to have a more concise representation of the rational function,

but to be precise these products are actually Kronecker tensor products. If we unpack this

notation, we have that for a d-tuple of variable z = [z1, . . . zd], where we can assume that

each zj is a N × N matrix, the rational function r(z) can be represented in the following

way:

r(z) = c∗ ⊗ 1N

(
1n ⊗ 1N −

∑
Aj ⊗ zj

)−1

b⊗ 1N . (6.18)

Interestingly, the minimal realization has the maximal domain of all the rational expressions

that it represents [Vol18]. Note that we can use the formalism of minimal realizations to

represent polynomials (in this case it is enough to choose Aj that are jointly nilpotent). We

conclude this section with a result from Jury et al. characterizing rational functions in the

NC Hardy space [JMS21a].

Theorem 6.1.2 ([JMS21a]). Let A = [A1, . . . ,Ad], and let r be a NC rational function with

minimal realization:

r(z) = c∗ (1−Az)−1 b. (6.19)

Then r ∈ H2(Fn) if and only if ρNC(A) < 1.
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6.1.3 NC Hankel Operators

We recall Popescu’s definition of NC Hankel operator [Pop03]. Let X = [X1, . . . , Xn], Xi ∈

B(Y) be an arbitrary sequence of bounded operators on a Hilbert space Y , and let T =

[T1, . . . , Tn], Ti ∈ B(H). Suppose to have an orthogonal decomposition H = H− ⊕H+ such

that H+ is invariant with respect to each Ti ∈ B(H), for i = 1, . . . n. We denote with P−

and P+ the orthogonal projections on H− and H+ respectively.

Definition 6.1.9. A NC Hankel operator is a bounded linear operator Γ : Y → H− such

that:

ΓXi = P−TiΓ for any i = 1, . . . , n. (6.20)

Similarly to what seen in Section 2.4.5, the definition of symbol can be generalized using

the notion of multiplier.

Definition 6.1.10. A multiplier is bounded linear operator A : Y → H such that:

AXi = TiA for any i = 1, . . . , n. (6.21)

Following Popescu [Pop03] we remark that, given a multiplier, it is always possible to

associate with it a Hankel operator defined as:

ΓAy = P−Ay for y ∈ Y , (6.22)

and ||ΓA|| ≤ ||A||. In fact it is easy to see that:

ΓAXiy = P−AXiy

= P−TiP−Ay + P−TiP+Ay

= P−TiP−Ay

= P−TiΓy.
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The converse of this statement is the subject of the multivariable Nehari theorem.

Theorem 6.1.3 (NC Nehari Theorem [Pop03]). Let X = [X1, . . . , Xn], Xi ∈ B(Y) and

T = [T1, . . . , Tn], with Ti ∈ B(H), be such that:

‖X1y1 + · · ·+Xnyn‖2 ≥ ‖y1‖2 + · · ·+ ‖yn‖2, yi ∈ Y (6.23)

‖T1h1 + · · ·+ Tnhn‖2 ≤ ‖h1‖2 + · · ·+ ‖hn‖2, hi ∈ H. (6.24)

Then, given a generalized Hankel operator ΓA : Y → H−, with ΓXi = P−TiΓ for any

i = 1, . . . , n, there exists a multiplier A : Y → H such that Γ = ΓA and ||Γ|| = ||A||.

The following corollary is a direct consequence of Nehari’s Theorem.

Corollary 6.1.3.1 ([Pop03]). Let ΓA : Y → H− be a NC Hankel operator, then:

‖ΓA‖ = inf{‖A− F‖ : F : Y → H is a multiplier with F (Y) ⊂ H+}. (6.25)

Moreover, there exists an optimal multiplier F ∗ such that ‖ΓA‖ = ‖A− F ∗‖.

6.1.4 NC AAK Theorem

In this section we state a NC version of the AKK theorem. In particular, we consider the the-

orem obtained by Popescu [Pop03], which generalizes Theorem 2.4.9 from Treil and Volberg

[TV94]. Note that, unlike Theorem 2.4.6, this version of the theorem is not constructive.

Let B ∈ B(Y) be a self-adjoint operator on a Hilbert space Y , and let P+ and P− be

the orthogonal projections onto the non negative and strictly negative spectral subspaces.

We denote Y∓ = P∓Y . It is possible to show that if dimY− < ∞, then it is equal to the

number of negative eigenvalues of B, counted with their multiplicities. We assume that the

operator B− := PA|Y− is invertible. Let

K+ = {v ∈ H : (Bv,v) ≥ 0} (6.26)
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be the cone of B-nonnegative vectors. We recall from [Pop03] the multivariable version

Theorem 2.4.8 from Iokhvidov and Fan [Iok64].

Theorem 6.1.4 ([Pop03]). Let B ∈ B(Y) be a self-adjoint operator on a Hilbert space Y,

with B− be invertible. Let Xi ∈ B(Y), for i = 1, dots, n be such that:

X1K+ + · · ·+XnK+ ⊂ K+ (6.27)

and P+XiP− is a compact operator. Then there exists a maximal subspace M of K+ which

is maximal (by inclusion) and Xi-invariant.

We recall that, analogously to what done in Section 2.4.5, the singular numbers of a

Hankel operator ΓA : Y → H− can be characterized in terms of subspaces M ⊂ Y in the

following way:

σn(Γ) = inf{‖Γ|M‖ : codimM≤ n}.

Applying Theorem 6.1.4 to the operator B = σn(Γ)1− Γ∗Γ, B ∈ B(Y), and to the cone

of its nonnegative vectors

K+ = {v ∈ Y : (Bv,v) ≥ 0} = {v ∈ Y : ||Γv|| ≤ σnv} (6.28)

we obtain the following version of the AAK theorem:

Theorem 6.1.5 (NC AAK Theorem [Pop03]). Let X = [X1, . . . , Xn], Xi ∈ B(Y), and let

T = [T1, . . . , Tn], Ti ∈ B(H), be such that:

‖X1y1 + · · ·+Xnyn‖2 ≥ ‖y1‖2 + · · ·+ ‖yn‖2, yi ∈ Y (6.29)

‖T1h1 + · · ·+ Tnhn‖2 ≤ ‖h1‖2 + · · ·+ ‖hn‖2, hi ∈ H. (6.30)

Let ΓA : Y → H− be a NC Hankel operator, with ΓXi = P−TiΓ for any i = 1, . . . , n. Let
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{σi}i≥0 be the sequence of its singular numbers. Then:

σn(Γ) = inf{‖Γ|M‖ :M⊂ Y , codimM≤ n, XiM⊂M}

and the infimum is attained.

6.2 A Framework for Multi-Letter Alphabets

In this section, we consider alphabets Σ with the property that |Σ| = d, with d > 1. In this

case, the set of strings Σ∗ can be identified with Fd, the free monoid generated by d elements.

Therefore, a WFA A = 〈α, {Aa},β〉 over a multi-letter alphabet Σ can be seen as computing

a function fA : Fd → R. Note that when d > 1, Fd has a noncommutative structure, so

it cannot be embedded into Z. Concretely, this means that the approximate minimization

problem cannot be addressed using AAK theory on Hardy spaces. To extend these results,

it is thus necessary to find a way to adapt the standard methods from harmonic analysis

to the nonabelian setting. As noted in Section 6.1.1, a recent line of work in multivariable

operator theory has been centered around extending the results of standard operator theory

to the case of noncommutative operators defined on Fock spaces [Fra82, Bun84, Pop93,

AP95, Pop10, Pop06a, Pop89c, Pop95b, Pop03, Pop89b, Pop13, Pop92]. In particular, a NC

version of the AAK theorem is presented in a recent work of Popescu [Pop03], but its proof is

not constructive. Therefore, solving the approximate minimization problem for multi-letter

alphabets using AAK theory comes with two distinct challenges:

• Finding a NC Hankel operator: given a WFA and its Hankel matrix, we need to find

a way to reformulate the approximation problem using multivariable operators. In

particular, we need to find a noncommutative analogue of Hardy spaces, the shift

operator, and of the symbol.

• Making AAK constructive again: the proof of the noncommutative version of the AAK
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theorem does not provide us with an expression for the optimal approximation. Ideally,

we would like to rework the proof so that it becomes constructive.

In the next sections we analyze the first point, while the second will be the focus of the

next chapter.

6.2.1 From Hankel Matrix to Hankel Operator

We consider a model over a multi-letter alphabet Σ, with |Σ| = d, and the Hankel matrix

associated with it. As noted in the previous section, the model is computing a function

f : Fd → R. It is important to notice that a function of this type can be interpreted as an

element in the Fock space F 2. We use a running example to better illustrate the properties

and connections between the approximation problem and multivariable operator theory.

Example 6.2.1. We consider an alphabet Σ = {a, b} with two letters, and we denote with

ε the empty string. The set of strings Σ∗ can be associated with the free monoid generated

by two elements F2, where the generators are g1 = a and g2 = b. As shown in Example

6.1.1, a word α = aba can be seen as an element in F2, with α = aba = g1g2g1, and the

corresponding element in the Fock space F 2 is eα = e1 ⊗ e2 ⊗ e1. Now, we can consider a

function:

f : Σ∗ → R

α 7→ f(α)

This function can be viewed either as an element in the Fock space F 2, using a sequence

interpretation:

(f(ε), f(a), f(b), f(aa), f(ab), f(ba), f(bb), f(aaa), . . . ) ∈ F 2 =
⊕
k≥0

(R2)⊗k, (6.31)
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Classical Hankel op H Generalized Hankel op Γ NC Hankel op Γ
H : H2 → H2

− Γ : H1 → H−2 Γ : Y → H−
HS = P−SH ΓS1 = P−S2Γ ΓXi = P−TiΓ

S : H2 → H2, S(f) = zf S1 : H1 → H1 X = [X1, . . . , Xn], Xi ∈ B(Y)
S : H2 → H2, S(f) = zf S2 : H2 → H2 T = [T1, . . . , Tn], Ti ∈ B(H)

S isometry S1 exp., S2 contract. X exp., T contract.
H2 Hardy space H1 Y = ?

H2
− Neg Hardy space H−2 H− = ?
L2(T) = H2 ⊕H2

− H2 = H+
2 ⊕H−2 ?

Table 6.1: Comparison between classical, generalized and NC Hankel operators

or as a power series in the NC Hardy space H2(F2), using a functional interpretation:

f(ε) + f(a)z1 + f(b)z2 + f(aa)z2
1 + f(ab)z1z2 + f(ba)z2z1 + · · · =

∑
α∈Σ∗

f(α)zα. (6.32)

In fact, we recall that the Fock space is isomorphic to the Hilbert space of square summable

sequences indexed by Σ∗, which is in turn isomorphic to the set of functions f : Σ∗ → R.

Our objective is to leverage the correspondence between a function computed by a model

and its Fock space interpretation, in order to solve the approximate minimization problem

using the theory developed in Section 6.1.1. In particular, we want to adapt Definition

6.1.9, the definition of NC Hankel operator introduced by Popescu [Pop03], to the language

modelling setting.

As a first step, we report in table 6.1 a comparison between the different classes of

Hankel operators introduced in Chapter 2. In the first column, we have the classical Hankel

operator defined between Hardy spaces, and the shift corresponds to the multiplication

by the complex variable z (see Definition 2.4.8). In the second column, we describe the

generalized Hankel operator from Treil and Volberg [TV94]. The main difference in this

definition is that the “shift” considered does not have to be an isometry, but is substituted

by a contractive and an expansive operator (see Definition 2.4.11). Finally, in the last column

we recall the definition of NC Hankel operator from Popescu [Pop03], which was introduced
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in Section 6.1.3 (see Definition 6.1.9). In this case, instead of simple operators, we consider

row operators. Similarly to the generalized case, the shift is replaced by two operators that

are not necessarily isometries.

To apply multivariable operator theory (and the NC AAK theorem) to the approximate

minimization problem, we need to understand how to reformulate Equation 2.24 (the Hankel

equation), and to find suitable transformations that will play the roles of the row operators

T and X. Moreover, we need to choose appropriate generalizations of the Hardy spaces.

Specifically, we need to find a noncommutative analogue of the function space L2(T): a

space containing H−, and in which the noncommutative equivalent of the backward shift is

defined.

We start by considering the shift operators defined on the Fock space F 2. We recall

that B = {egi : gi ∈ Fn} is an orthonormal basis for F 2, where eα = ei1 ⊗ ei2 ⊗ · · · ⊗ eik if

α = gi1gi2 · · · gik , and ei0 = 1. The left shift Si : F 2 → F 2 is defined, for i = 1, . . . , d, by:

Si(eα) := ei ⊗ eα = eiα, (6.33)

while the right shift Ri : F 2 → F 2 is defined, for i = 1, . . . , d, by:

Ri(eα) := eα ⊗ ei = eαi. (6.34)

To avoid using different notations for the same operator, we will always denote the right

and left shifts as R and S, respectively, independently on whether they are defined on F 2

or on the NC Hardy space. Note that the NC shifts are row operators: S = (S1, . . . , Sd),

R = (R1, . . . , Rd).

Example 6.2.2. We continue with the setting of Example 6.2.1. In this case, the right shift

is defined as S = (S1, S2), with:

S1(eα) = eaα (6.35)
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and

S2(eα) = ebα. (6.36)

The adjoint of S is defined as:

S∗1(eα) =


eα′ if α = aα′

0 otherwise.

(6.37)

The right shift and its adjoint can be defined in a similar way.

It is possible to express the right shift in terms of the left one by using a unitary operator,

the flipping operator U :

Ri = U∗SiU (6.38)

with

U(ei1 ⊗ ei2 ⊗ · · · ⊗ eik) = eik ⊗ · · · ⊗ ei2 ⊗ ei1 . (6.39)

We use the left and right shifts to rewrite Equation 2.10 in the case of multi-letter

alphabets.

Theorem 6.2.3. Let |Σ| = d, and let H be the Hankel matrix associated to a function

f : Σ∗ → R, i.e. H(i, j) = f(ij). Let S = (S1, . . . , Sd), R = (R1, . . . , Rd) be the left and

right shifts on F 2, S∗ and R∗ their adjoints. Then, the following Hankel equation holds:

HSi = R∗iH for i = 1, . . . , d. (6.40)

Proof. For this proof, we leverage the functional representation of the Fock space. We recall

that in the NC Hardy space, the left shift is equivalent to left multiplication by one of the

noncommutative variables: Sif = zif . Moreover, the function f : Σ∗ → R associated to the

Hankel matrix can be represented by means of a formal power series in the NC Hardy space:
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f =
∑
α∈Σ∗

f(α)zα. (6.41)

Furthermore, this function corresponds to the first column of the Hankel matrix. Analo-

gously, it is easy to see that the column at index α is:

Heα =
∑
β∈Σ∗

f(βα)zβ. (6.42)

Therefore:

HSi(eα) =
∑
β∈Σ∗

f(βiα)zβ. (6.43)

On the other hand, we can consider the adjoint of the right shift:

R∗iHeα = R∗i
∑
β∈Σ∗

f(βα)zβ. (6.44)

In this case, after applying R∗i the terms in the series for which β 6= β′i for any β′, become

zero. We obtain:

R∗iHeα =
∑
β′∈Σ∗

f(β′iα)zβ
′
, (6.45)

Thus, for any i = 1, . . . , d, we have the equation:

HSi = R∗iH (6.46)

which concludes the proof.

We use the recurring example to better illustrate the theorem above and the new Hankel

equation.

Example 6.2.4. We consider the Hankel matrix H associated to the rational function f

computed by a WFA A = 〈α, {Aa},β〉 defined over an alphabet Σ = {a, b}. We have the
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following bi-infinite matrix:

H =



f(ε) f(a) . . . f(ba) . . . f(aba) . . .

f(a) f(aa) . . . f(aba) . . . f(aaba) . . .

f(b) f(ba) . . . f(bba) . . . f(baba) . . .

f(aa) f(aaa) . . . f(aaba) . . . f(aaaba) . . .

f(ab) f(aba) . . . f(abba) . . . f(ababa) . . .

f(ba) f(baa) . . . f(baba) . . . f(baaba) . . .

. . . . . . . . . . . . . . . . . . . . .



. (6.47)

It is easy to see that:

HSa(eba) = Heaba

=
∑
β∈Σ∗

f(βaba)zβ

= f(aba)z0 + f(aaba)z1 + f(baba)z2 + . . . (6.48)

On the other hand, if we consider the adjoint of the right shift, we have the following relation:

R∗aH(eba) = R∗a
∑
β∈Σ∗

f(βba)zβ =
∑
β′∈Σ∗

f(β′aba)zβ
′

= f(aba)z0 + f(aaba)z1 + f(baba)z2 + . . . . (6.49)

Following this reasoning, we can obtain the same results for Sb and R∗b , so the Hankel equation

holds.

Equation 6.40 can be rewritten using only the left shift by leveraging the flipping operator

U . In fact, by setting J = UH, we obtain:

JSα = S∗αJ ∀α ∈ Σ. (6.50)
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Now that we have a noncommutative version of the Hankel equation, we need to find

appropriate definitions for the spaces Y , H−, and H = H− ⊕H+. To achieve this, we draw

inspiration from the one-letter setting. It has become clear from the examples above and

from the previous theorem that, for a sequence-to-sequence interpretation of the Hankel

matrix, the natural noncommutative generalization of `2(N) is the Fock space F 2. For the

functional interpretation we consider instead the NC Hardy space. Therefore, we propose

to set Y = H+ = F 2 (or Y = H+ = H2(Fd) in the functional interpretation). For the

definition of H, we decided to set H = F 2
0 ⊕ F 2. To have a better intuition of the reasoning

behind this definition, we can once again resort to the one-letter case and to the analogy

with the Hardy spaces. In the one-letter case, the role of H was played by L2(T) ∼= `2(Z).

In this case, we represented each function f in L2(T) using the bi-infinite sequence of its

Fourier coefficients, and L2(T) = H2
− ⊕H2. In particular, the elements of H2

− are functions

with only negative Fourier coefficients, so they can be seen as sequences indexed by negative

powers of the complex variable z, while elements of H2 correspond to sequences indexed by

nonnegative powers of z. Therefore, a function f ∈ L2(T) can be represented as:

(. . . , f̂(−2), f̂(−1), f̂(0), f̂(1), f̂(2), . . . )
. . . z−2 z−1 z0 z1 z2 . . .

Analogously, we can think ofH = F 2
0⊕F 2 as a set of bi-infinite sequences that are indexed

by negative powers (the F 2
0 - component), and nonnegative powers of the NC variables

z1, . . . , zd (the F 2-component). We can see below an example of the indexing in the setting

of Example 6.2.1:

(. . . , f(a−2), f(b−1), f(a−1), f(ε), f(a), f(b), f(aa), f(ab), . . . )
. . . z−2

1 z−1
2 z−1

1 z0
1z

0
2 z1

1 z1
2 z2

1 z1
1z

1
2 . . .

It is important to remark that the correspondence between L2(T) = H2
− ⊕ H2 and

H = F 2
0 ⊕ F 2 is not perfect. While it is certainly helpful to think about the indexing in

terms of negative and nonnegative exponents, the functional interpretation of the Fourier
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expansion is lost in the noncommutative case, where the function cannot be easily analyzed

at the boundary of its domain.

To simplify the exposition, we start by considering the sequence interpretation. As noted

before, the Fock space and the NC Hardy space are isomorphic, so the results obtained in

one setting can be easily transposed to the other one.

Theorem 6.2.5. Let S = (S1, . . . , Sd), R = (R1, . . . , Rd) be the left and right shifts on F 2,

S∗ and R∗ their adjoints. Let Y = F 2, H = F 2
0 ⊕ F 2, where F 2

0 =
⊕

k>0(Rd)⊗k. We set

H− = F 2
0 and H+ = F 2, and we define, for i = 1, . . . , d, a bilateral shift on H:


Ri(eα) = R∗i (eα) for eα ∈ H−

Ri(eα) = Ri(eα) for eα ∈ H+

. (6.51)

Let P− be the orthogonal projection on H−.

Then, the operator H : Y → H− defined by the following property:

HSi = P−RiH for any i = 1, . . . , n (6.52)

is a NC Hankel operator according to Definition 6.1.9

Proof. In order to prove the theorem we need to verify the following two properties:

(a) H− ⊂ H

(b) If H = H− ⊕H+, then H+ is invariant under each Ri.

In particular, we want to show that these properties are satisfied when Y = F 2, H− = F 2
0

and H = F 2
0 ⊕ F 2.

(a) The first property follows directly from the definition of H: F 2
0 ⊂ F 2

0 ⊕ F 2.

(b) Since H− = F 2
0 , it follows by definition that H+ = F 2.



CHAPTER 6. A FRAMEWORK FOR THE MULTI-LETTER CASE 107

We want to show that:

R1H+ + · · ·+RdH+ ⊆ H+ (6.53)

i.e. that for any hi ∈ H+ we have R1h1 + · · ·+Rdhd ∈ H+. Since Ri(eα) = Ri(eα) for

eα ∈ F 2, the condition above can be reformulated as:

Ri(eα1) + · · ·+Rd(eαn) ∈ F 2, (6.54)

which holds by definition of R, since Ri(eα) = eαi ∈ F 2 for any α, and the linear

combination of elements in F 2 is an element in F 2.

While the choice of the Fock space seems natural, the definition of H is arbitrary, and

other spaces containing F 2 could have been employed. For example, one can think of the

free group over d elements, or of Cohn’s free field [Coh95]. The reasoning behind our choice

will become clearer after the following theorem, which states that the row operators R and

S respect the properties required to apply the noncommutative version of Nehari’s Theorem

(Theorem 6.1.3).

Theorem 6.2.6. Let H : Y → H−, with HSi = P−RiH, be the NC Hankel operator defined

in the previous theorem. Then:

(a) ‖S1y1 + · · ·+ Sdyd‖2 ≥ ‖y1‖2 + · · ·+ ‖yd‖2 for yi ∈ Y

(b)
∥∥R1h1 + · · ·+Rdhd

∥∥2 ≤ ‖h1‖2 + · · ·+ ‖hd‖2 for hi ∈ H

and the hypothesis of Theorem 6.1.3 are satisfied.

Proof. (a) We want to show that ‖S1y1 + · · ·+ Sdyd‖2 ≥ ‖y1‖2 + · · · + ‖yd‖2 for yi ∈

Y (= F 2). Leveraging the fact that the shifts have pairwise orthogonal ranges, so
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S∗i Sj = 1δi,j, and that each Si is an isometry, we obtain:

‖S1y1 + · · ·+ Sdyd‖2 = 〈S1y1, S1y1〉+ 〈S1y1, S2y2〉+ · · ·+ 〈Sdyd, Sdyd〉

= 〈S1y1, S1y1〉+ 〈S2y2, S2y2〉+ · · ·+ 〈Snyn, Snyn〉

= ‖y1‖2 + · · ·+ ‖y2‖2.

(b) We want to show that
∥∥R1h1 + · · ·+Rdhd

∥∥2 ≤ ‖h1‖2 + · · ·+ ‖hd‖2 for any hi ∈ H (=

F 2
0 ⊕ F 2). Similarly to the previous point, we have that the shifts have orthogonal

ranges, so the result holds with the equality.

The Free Group It is now easy to see why the free group is not a suitable choice for our

setting. We denote with F∗d the free group on d elements, and with `(F∗d) the set of sequences

indexed by elements in the free group. By setting H = `(F∗d), the conditions of Theorem

6.2.5 are satisfied, but the ones of Theorem 6.2.6 are not. It is easy to see that H− ⊂ H, H+

is invariant under the bilateral shift, and that property (a) of Theorem 6.2.6 is satisfied. On

the other hand, property (b) does not hold anymore. The components of the bilateral shifts

don’t have orthogonal ranges, as R
∗
iRj ∈ H even when i 6= j. Intuitively the space is “too

big” for property (b) to hold. If we consider the intuition provided earlier in the section,

about indexing the elements of H = F 2
0 ⊕ F 2 using negative and nonnegative exponents, we

have that in the case of the free group any combination of positive and negative exponents

is allowed. Therefore, when defined on `(F∗d), the adjoint of the shift is:

R
∗
i (eα) =


eα′ if α = α′i

eαi−1 otherwise.

(6.55)
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6.2.2 NC Symbols and NC Rational Functions

In Section 6.1.3, we have seen that the multiplier (see Definition 6.1.10) plays, in the non-

commutative case, a role similar to that of the symbol. On the other hand, unlike in the

commutative case, the multiplier is an operator, not a function. Ideally, we would like to

obtain a functional representation of the multiplier. To achieve this, we first analyze the

multiplier and find that, with minimal manipulations, we can get a functional description of

it. In particular, using the flipping operator U defined in Equation 6.39, we can rewrite the

NC Hankel equation for the NC Hankel operator H as:

HSa = U∗S∗aUH, (6.56)

or

UHSa = S∗aUH. (6.57)

Analogously, the property satisfied by the multiplier becomes:

UASa = SaUA. (6.58)

An operator commuting with the shift is said to be NC S-analytic [Pop93]. NC S-analytic

operators can be characterized by means of a function, called the NC symbol. The full

details of this definition can be found in the work of Popescu [Pop95b]. In particular, a NC

symbol φ for the operator UA respects the following property:

UASav = Saθv. (6.59)

Concretely, this means that we can use the NC symbol θ to represent the operator UA

(which is the multiplier up to a unitary transformation). By construction, the NC symbol

θ corresponds to the multiplication by the first column of the matrix of UA (this statement
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follows from [Pop93, Theorem 1.6]). It is now easy to see that this functional description

is actually strictly related to the original Hankel operator. In fact, we can apply again the

unitary transformation to obtain a function Uθ. Note that this function can be written as the

sum of two components, Uθ = φ+ c, with φ ∈ H2
0 (Fd) and c ∈ H2(Fd) and, by construction,

φ corresponds to the multiplication by the first column of H. We refer to Uθ as the NC

flipped symbol of H.

Now that we have obtained a noncommutative generalization of the symbol and of Equa-

tion 7.1, it becomes interesting to investigate if we can derive an expression for the NC

flipped symbol of the NC Hankel operator arising from a WFA. This would allow us to de-

scribe a given minimal WFA using a (noncommutative multivariable) complex function, in

a way similar to what we did in Section 3.2.2 for the one-letter case. Let A = 〈α, {Aa},β〉

be a minimal WFA computing a function f over a multi-letter alphabet, let H be its Hankel

matrix and H the NC Hankel operator. The NC flipped symbol associated with H can be

expressed using the entries of the first column of H. Its series expression is:

P−(φ+ c) =
∑
a∈Fn

f(a)za (6.60)

=
∑
a∈Fn

α>Aaβzα (6.61)

= α>(1−
∑

Ajzj)
−1β (6.62)

We recall that the equation above can be unpacked using the Kronecker product as in

Equation 6.18. Note that φ is a NC rational function: once again we have a tight connection

between the rational functions studied by Fliess, Berstel and Reutenauer [Fli74, Ber79]

and (NC) rational functions defined in (noncommutative multivariable) operator theory.

This is very relevant, since in the one-letter case rewriting Equation 7.1 in terms of the

WFA’s parameters is the key step to algorithmically find the best approximation [BLP+21].

Therefore, assuming that there is a way to make the noncommutative proof constructive,
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we have built the machinery necessary to attack the problem in the case of multi-letter

alphabets.



Chapter 7

Tackling the Multi-Letter Case:

Approaches and Obstacles

In the previous chapter, we proposed a way to associate a NC Hankel operator and a NC

rational function to the Hankel matrix computed by a model on sequential data. In the one-

letter case, this allowed us to reformulate the approximation problem in terms of functional

analysis, and to solve it using AAK theory. Ideally, we would like to proceed in a similar

way in the noncommutative case, and leverage the results in the previous chapter in order to

apply techniques from noncommutative multivariable operator theory. In particular, we want

to apply Theorem 6.1.5, the NC version of the AAK theorem proved by Popescu [Pop03].

As mentioned before, the main obstacle in this approach is that the proof of this theorem is

not constructive. This means that, while we are guaranteed the existence of (at least) one

optimal approximation, we do not have any information on how to construct it. This makes

the multi-letter setting fundamentally different from the one-letter case, where the power of

AAK theory lies in the possibility of easily calculating the best approximation.

We tried to extend this proof in several ways, but ultimately did not succeed. In this

chapter, we summarize the two main approaches that we attempted in order to obtain the

desired constructive proof:

112
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1. We tried to make the constructive proof noncommutative. Looking at the standard

constructive proof of the AAK theorem (which can be found in Appendix A.2), we

analyzed the building blocks of the constructive proof, to understand whether or not

they could be generalized to the noncommutative setting.

2. We tried a system-theory approach. Leveraging the NC rational function obtained in

Section 6.2.2, and its expression in terms of the parameters of the WFA, we tried to

proceed similarly to Chapter 4 and to derive a set of constraints necessary for the result

to hold.

Both approaches come with a specific set of challenges, that cannot (yet) be completely

overcome. We highlight the main obstacles we encountered, and provide possible directions

for future work in the noncommutative setting.

In the first section, we briefly review the three main blocks of the proof of Theorem 2.4.6.

Then, we analyze the role played by the symbol in this proof, and show how some of the

results can be generalized to the noncommutative setting. Next, we provide a high-level

overview of the key role played by the singular vectors in obtaining a description of the

shift-invariant space which lies at the heart of the proof. In particular, we focus on the

relation between shift-invariant spaces, inner functions and the optimal approximation. In

the second section, we summarize an alternative possible approach (and its obstacles), based

on the connections between multivariable operator theory and system theory. We conclude

the chapter with a discussion and a summary of the questions that remain open.

7.1 Towards a Constructive Proof

We start with a brief overview of the three main steps in the proof of Theorem 2.4.6. A

more detailed version of this proof can be found in Appendix A.2:

1. Let ξk ∈ ker(H∗φHφ − σ2
k1), set ψ = φ− Hφξk

ξk
.
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2. Show that Hψ is the optimal approximation: ‖Hφ −Hψ‖ = σk.

3. Show that Hψ has the right size: rank(Hψ) ≤ k.

Following these three steps, we are able to construct the optimal approximation of a given

Hankel operator. While the result itself is about operators, the proof has a more functional

flavour. In particular, leveraging the relationship between a Hankel operator and its symbol,

we can reframe this setting as the approximation problem of a bounded function on the unit

circle (Theorem 2.4.7). This functional approach is also reflected in the last step of the proof,

which relies heavily on the two main ingredients of Beurling’s theorem: the shift-invariant

space and the inner-outer factorization.

7.1.1 Symbols and Norm Inequalities

The first two steps of the constructive proof of the AAK theorem follow from properties

of the symbol of a Hankel operator. In particular, we recall that, given a Hankel operator

Hφ : H2 → H2
−, a symbol is a function φ ∈ L2(T) = H2

− ⊕H2 satisfying:

• Hφf = P−φf ,

• ‖Hφ‖ = inf{‖ψ‖∞ : ψ̂(m) = φ̂(m), m < 0}, from which it follows: ‖Hφ‖ ≤ ‖φ‖∞.

In the proof of the AAK theorem, these properties are used to show the following set of

inequalities:

‖Hφ −Hψ‖ ≤ ‖φ− ψ‖∞ ≤ σk. (7.1)

In the noncommutative case, similar properties are satisfied by the multiplier. In particular,

given a NC Hankel operator HA : H2(Fd) → H2
0(Fd), with HASa = P−RaHA, a multiplier

A : H2(Fd)→ H2
0(Fd)⊕H2(Fd) satisfies the following properties:

• HAy = P−Ay,

• ||HA|| ≤ ||A||.
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Note that an operator A is a multiplier for a NC Hankel operator, together with any other

operator assuming the same values over H2
0(Fd). In Section 6.2.2 we have seen how we can

find a functional representation for the multiplier in terms of the NC flipped symbol.

Now, we would like to find a noncommutative version of Equation 7.1. To do that, we

first recall the following properties of NC S-analytic operators and their NC symbols.

Theorem 7.1.1 ([Pop93]). Let Tθ be a NC S-analytic operator, and let θ be its NC symbol.

The following properties hold:

• If Uθ ∈ H∞NC, then ‖Tθ‖ = ‖Uθ‖∞

• If Uθ1, Uθ2 ∈ H∞NC, then:

– Tθ1 + Tθ2 = Tθ1+θ2

– Tλθ1 = λTθ1 for λ ∈ C

– Tθ1Tθ2 = Tθ2⊗θ1.

Applying this theorem, we have that if H is a NC Hankel operator with multiplier A,

and if θ is the NC symbol of UA:

‖UH‖ ≤ ‖UA‖ = ‖Uθ‖∞. (7.2)

Note that UH is also a NC Hankel operator, so it makes sense to search for its optimal ap-

proximation. We start by remarking the following property, where R is a bounded operator:

||UH −R|| = 〈UH −R,UH −R〉 (7.3)

= 〈U(H − U∗R), U(H − U∗R)〉 (7.4)

= ‖H − U∗R‖. (7.5)
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Therefore, if we denote with UG the optimal approximation of UH, we have that G = U∗UG

is the optimal approximation of H. The following chain of inequalities directly generalizes

Equation 7.1 in the noncommutative case:

‖UH − UG‖ ≤ ‖UA− UB‖ ≤ ‖φ+ c− ψ − d‖∞. (7.6)

where H is the NC Hankel operator that we want to approximate, A is its multiplier and

φ+ c = Uθ, where θ the NC symbol of UA.

Note that we have found a way to rephrase one of the key steps of the commutative proof

of AAK theorem using the new noncommutative framework.

7.1.2 Shift-Invariant Spaces and Inner Functions

We now want to understand the fundamental step that makes the proof in the classical

case constructive. Indeed, all three versions of the AAK theorem (classical, generalized

and noncommutative) relies on the existence of a shift-invariant space. What makes the

classical proof constructive is an interesting property that relates this shift-invariant space

with the singular vectors. For simplicity, we assume that σk is a simple singular number, i.e.

σk−1 > σk > σk+1. Interestingly, any singular vector ξk corresponding to the k-th singular

value σk has precisely k roots {zi}0≤i<k (counted with their multiplicities) inside the unit

disc [Cla68]. The proof of the classical AAK theorem shows that the rational symbol of the

rank-k optimal approximation has poles located at {1/zi}0≤i<k. Since the location of the

symbol’s poles can be directly calculated using the singular vectors, it is relatively easy to

build the optimal approximation. More specifically, the theorem is proven by analyzing the

shift-invariant space defined by the functions generated by a σk-Schmidt pair. Therefore, it

would be useful to investigate if a relation between shift-invariant spaces and the singular

vectors still exists in the (commutative) generalized AAK theorem and the NC AAK theorem.

In particular, we can consider the proof of Theorem 2.4.9, the commutative generalized
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AAK theorem. The theorem states that, given a generalized Hankel operator Γ with respect

to the operators S1 (expansive) and S2 (contractive), we have:

σn(Γ) = inf{‖Γ|M‖ :M, codimM≤ n, S1M⊂M},

and the infimum is attained. In this case, a fixed point theorem is used to show the existence

of a shift-invariant space M of codimension k. To understand the connection between

this proof and the constructive one, it is enough to consider the shift-invariant space N =

Span{Sjf : j ≥ 0} generated by f ∈ H2, where Span denotes the topological closure

of the linear span of the set and S is the unilateral shift on the Hardy space. If N has

finite codimension k, using Beurling’s theorem (Theorem 2.4.5) and the properties of inner

functions, it is possible to prove that f has precisely k zeroes inside the unit disc. Moreover,

N consists of those functions that share the zeroes of f . This means that g ∈ N if and only

if any zero of f is also a zero of g, with greater or equal multiplicity. Now, if we reformulate

Theorem 2.4.9 in the setting of classical Hankel operators, it is easy to see that:

M = Span{Sjξk : j ≥ 0}, (7.7)

where ξk is the singular vector corresponding to the k-th singular value σk. Being able

to describe the shift-invariant space in terms of the singular vectors is fundamental in the

constructive proof. However, when considering the proof in the generalized commutative

case, it is not clear if this reasoning can be extended, or if M is determined at all by the

zeroes of ξk. Andersson et al. [Car09] note that this statement cannot hold in its full

generality, and provide a constructive version of Theorem 2.4.9 for a more restricted class of

Hilbert spaces (to which the Dirichlet space belongs). Also in this case, while the inclusion

Span{Sjξk : j ≥ 0} ⊂ M trivially holds, the reverse is still an open problem.

In the noncommutative case, we are in a somehow similar situation. The NC AAK

theorem (Theorem 6.1.5) directly extends the generalized AAK theorem (Theorem 2.4.9),
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and its proof also relies on a fixed-point argument. Therefore, it is unclear whether or not

M is determined by the zeroes of ξk. Moreover, it is not obvious a priori that there is

a noncommutative counterpart of the results related to Beurling’s theorem and the inner-

outer factorization (Theorem A.1.1) that are used to describe the shift-invariant space in the

classical case.

To better understand how the definition of inner-outer factorization can be extended in

the noncommutative case, we analyze in more details the last passage of the commutative

proof. This step is concerned with proving that the rank of Hψ (the candidate optimal

approximation of the Hankel operator Hφ) is indeed k. By construction, ker(H∗φHφ−σ2
k1) ⊂

kerHψ. Moreover, since kerHψ is a shift-invariant subspace, by Beurling’s theorem we have

that θH2 ⊂ kerHψ, where θ is the greatest common divisor of the inner parts of non-

zero functions f ∈ ker(H∗φHφ − σ2
k1). From Theorem A.1.3 in Appendix A, it follows that

rankHψ ≤ dim(θH2)⊥ = degθ. This key passage in the proof ties the problem of establishing

the rank of the operator to that of factorizing a complex function.

Interestingly, there is a noncommutative counterpart of most of the results described in

the previous paragraph. In particular, Popescu provides a characterization of inner and outer

NC functions and a description of shift-invariant spaces similar to that of Beurling’s theorem

[Pop93]. These results are a natural extension of the commutative case, expressed in terms

of multipliers in the multiplier algebra H∞NC (that we introduced at the end of Section 6.1.1).

In fact, in the commutative case, we could have expressed the properties defining Blaschke,

singular inner and outer functions in terms of multipliers. Given a function f ∈ H∞, we

say that f is inner if the associated multiplier Mf is an isometry, and outer if Mf has dense

range. Moreover, an inner function θ is Blaschke if:

θH2 = S(θ) =

{
f ∈ H2 :

f

θ
∈ Hol(D)

}
. (7.8)

Popescu’s definition of inner and outer function is equivalent to that of the commutative
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case: a NC function is inner if the corresponding NC left multiplier is an isometry, it is

outer if the multiplier has dense range. Analogously, Popescu extends Beurling’s theorem:

a subspace M ⊂ H2(Fn) is invariant for each Sα (for α ∈ Fn) if and only if there exists an

inner multiplier Θ such thatM = ΘH2(Fn) [Pop93]. Note that the range of a NC inner left

multiplier is a subspace that is invariant with respect to the right shift [DP99]. In recent

work, Jury, Martin and Shamovich [JMS21b] provide a noncommutative generalization of

the definition of Blaschke product and of Theorem A.1.2. The definition of NC Blaschke left

multiplier relies on the concepts of NC varieties and NC singularity spaces. In particular,

given any F ∈ H∞NC, the left NC variety of F is:

Sing(F ) =
⊔
n≥0

Singn(F ) ; Singn(F ) := {(z, y) ∈ Bdn × Cn : y∗F (z) = 0}. (7.9)

The left NC singularity space of F is the shift-invariant space defined as:

S(F ) = {h ∈ H2(Fn) : y∗h(z) = 0∀(z, y) ∈ Sing(F )}. (7.10)

We say that a NC inner function B ∈ H∞NC is NC Blaschke if Ran(MB) = S(B), where

S(B) is the singularity space of B. Therefore, like in the classical case, NC Blaschke inner

functions are completely determined by their noncommutative zeros.

7.1.3 Challenges

Having managed to obtain a noncommutative counterpart of the definition of symbol, and

that the concept of inner and outer functions and Blaschke product have already been gen-

eralized, is certainly encouraging. The main challenge with this approach arises when we

try to establish the dimension of the shift-invariant subspace (the third and last step of the

constructive proof). The result in the commutative case relies on counting the inner divisors

of the inner function generating the shift-invariant subspace, and on Theorem A.1.3 (whose
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proof follows from the definition of Blaschke factors and the relation between them and the

reproducing kernels defined on the space). Interestingly, the Fock space is a reproducing

kernel Hilbert space, and a connection can be established between reproducing kernels and

NC rational functions (the set of reproducing kernels for H2(Fn) is equal to the set of ra-

tional functions on the same space [JMS21a]). However, we do not have yet a satisfying

characterization of NC Blaschke factors, and this is a big obstacle towards establishing the

noncommutative result in a way similar to the commutative case. In particular, the ques-

tion of whether or not we can characterize NC Blaschke factors in terms of their minimal

realizations is still an open question in the field of noncommutative multivariable operator

theory [JMS21b]. It is important to consider that the problem of factoring polynomials is

much harder in the NC setting, therefore some of the arguments that rely on polynomial

factorization in the one-variable case are unlikely to succeed in the multi-variable setting.

7.2 An Alternative Approach from System Theory

The last approach that we consider is based on the solution we proposed in Chapter 4 to solve

the approximate minimization problem for WFAs. The method is inspired by system theory,

and the state-space approach used to solve the model reduction problem. An overview of

these results can be found in the next chapter, in Section 8.3. The connection between

discrete systems and operator theory is discussed in the work of Helton [Hel74] and has been

extended to the multi-linear case of Fornasini-Marchesini systems by Ball and Bolotnikov

[BB19, BB21]. In particular, these two authors highlight the connection between contractive

multipliers and dissipative linear systems.

We start by briefly recalling the main steps we followed in Chapter 4 to solve the problem

in that single-letter setting:

• We define Â = 〈α̂, Â, β̂〉 with j ≥ k states such that 1 is not an eigenvalue of Â and
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E = 〈αe,Ae,βe〉 is minimal, with:

Ae =

A 0

0 Â

 , αe =

 α
−α̂

 , βe =

β
β̂

 .

• We consider the function: e = φ− ψ = α>e (z1−Ae)
−1βe + Ce.

• From the AAK theorem we know that: ‖e‖∞ = σk. Therefore, from the maximum

modulus principle for holomorphic functions, we have e(z)e∗(z̄−1) = σ2
k1.

• From the condition above we derive the following set of equations:

(a) Pe −AePeA
>
e = βeβ

>
e

(b) Qe −A>e QeAe = αeα
>
e

(c) PeQe = σ2
k1

from which we obtain Â, α̂, β̂.

• We extract the rational component of ψ by locating the poles.

A noncommutative version of these steps would allows us to build a WFA that, by

construction, is an optimal approximation. It is important to note that, in the one-letter

case, we had theoretical guarantees on the existence of the solution, derived from Theorem

2.4.7. This is not guaranteed in the multi-letter case, where we don’t have an equivalent of

the AAK theorem for the symbols. Therefore, following this approach, we might not be able

to find a solution at all.

Following the method presented in Section 6.2.2, we can associate a NC rational function
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to a given WFA. In particular, we consider the following NC rational functions:

φ = α∗(1−
∑

Ajzj)
−1β (7.11)

ψ = α̂∗(1−
∑

Âjzj)
−1β̂ (7.12)

e = α∗e(1−
∑

Aejzj)
−1βe, (7.13)

where we did not write explicitly the tensor products, and where an additional constant

needs to be added to each function to obtain a NC flipped symbol. The functions above

are defined using the coefficients of three WFAs: A = 〈α, {Aa},β〉, Â = 〈α̂, {Âa}, β̂〉, and

E = 〈αe, {(Ae)a},βe〉. From Equation 7.6, we can see that it is still reasonable to hope that

the following inequality holds:

‖e‖∞ ≤ σk. (7.14)

Using the language of multipliers introduced in section 6.1.1, this means that σ−1
k e (or, more

precisely, Mσ−1
k e) is a contractive multiplier. Ball and Bolotnikov show that it is possible to

characterize contractive multipliers between Fock spaces in terms of state-space realizations

of discrete systems [BB19, Theorem 3.8]. We now reformulate this result in the framework

of weighted automata.

Theorem 7.2.1 ([BB19]). Let e = α∗e(1 −
∑

Aejzj)
−1βe + c be a NC function associated

to an automaton E defined over an alphabet Σ, with |Σ| = d. Then, σ−1
k e is a contractive

multiplier if and only if the following properties are satisfied:

(a) Ae = [Ae1, . . .Aed] is strongly stable, i.e. for all x:

lim
N→∞

∑
α∈Fd:|α|=N

‖Aα
e x‖

2 = 0 (7.15)

(b) Qe −A>e QeAe ≥ αeα>e
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(b)

βe
c

[β∗e c∗
]

=

Q−1 ⊗ 1 0

0 1


Ae

αe

Q−1
e

[
A∗e α∗e

]
.

This theorem can be seen as a noncommutative version of Theorem 4.2.2. Also in this

case, there exists a matrix Qe satisfying the fixed-point equation characterizing the Gramians

(property (b)). The first property corresponds to the requirement we imposed on the spectral

radius of Ae in the one-letter case, and is analogous to the condition on the joint spectral

radius used by Balle et al. [BPP19].

7.2.1 Challenges

Theorem 7.2.1, paired with the definition of NC flipped symbol, is extremely encouraging.

It shows that, indeed, a parallel can be drawn between the one-letter and the multi-letter

case. Nonetheless, there are two major challenges that need to be faced before we can hope

to obtain a result.

The first challenge is linked to the computation of the infinity norm in the multi-variable

case. In the one-letter setting, the maximum modulus principle for holomorphic functions

allows us to obtain the infinity norm of a function by computing its value at the boundary.

In particular, when we consider the constraint ‖e‖∞ = σk from the AAK theorem, this

can be reformulated as a problem on the unit circle, and obtain e(z)e∗(z̄−1) = σ2
k1. Being

able to easily compute the infinity norm is at the core of the result in Chapter 4, and it

is necessary to obtain the set of constraints in Theorem 4.2.2. Some of these constraints

have been translated to the multi-letter case in Theorem 7.2.1, but we are still missing a

property similar to that in point (c) of Theorem 4.2.2. Concretely, we do not have enough

constraints to derive the desired result. Obtaining a bound in the infinity norm is not as

immediate in the multi-letter case. In his paper Free holomorphic functions on the unit ball of

B(H)n, Popescu develops a theory for noncommutative multivariable holomorphic functions,

including a version of the maximum modulus principle [Pop06a, Theorem 3.3]. The theory
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pioneered by Popescu constitutes a nice and direct extension of the single-variable case, but

it is still not clear how it can be adapted to our setting. Nonetheless, it is a direction that

is worth pursuing.

The second challenge seems harder to overcome. The issue lies with what, in Chapter 4,

we had referred to as the extraction of the rational component. More specifically, in the one-

letter case, we heavily applied Theorem 2.4.7. This theorem told us precisely to which class

of functions the symbol of the best approximation belongs, as we knew that ψ ∈ H∞k . This

implied that the rational component had k zeros inside the unit disc. Therefore, to extract it,

it was enough to block-diagonalize the transition matrix. At this stage, it is unclear whether

or not this holds in the noncommutative case. Even assuming that we can solve the first

challenge, we do not necessarily know if we have obtained the best approximation, or if we

need to extract a component from it. Once again, we are back to the problem of factorizing

a NC rational function.

7.3 Discussion

In this chapter, we provided an overview of the main challenges and obstacles that need to

be overcome to make the proof of the NC AAK theorem constructive, and presented two

possible approaches to solve the problem. The first approach entails finding the appropri-

ate shift-invariant space and proving that it has the right codimension. From the theory

of Krein spaces, we know that there might be more than one maximal subspace (in which

case they all have the same dimension). Thus, choosing the right shift-invariant space could

be challenging. The alternative to using Krein methods is to find a way to describe the

NC Blaschke factors. This is strictly related to the problem of factorizing a noncommutative

polynomial, and it is an open question in the field of noncommutative multivariable operator

theory. Addressing it is fundamental for this approach to work. The system-theory approach

has the advantage that can be formulated in terms of minimal realizations. Indeed, several
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methods from functional analysis that rely on factorizing a polynomial have been successfully

extended to the noncommutative case using minimal realizations. Even though there are still

several challenges that need to be addressed, we believe that at this stage the system-theory

approach is the most promising one. To proceed further, the most pressing problem is to

analyze the boundary values of a NC rational function. The noncommutative theory needed

to solve our task has deep connections to noncommutative algebra, free real algebraic geom-

etry, and free probability; the problem can therefore be tackled using different approaches.

The field of noncommutative multivariable operator theory is still very young, and there

have been recently several signs of progress in this direction. Addressing them is a necessary

step towards obtaining the strong theoretical guarantees, and closed-form solutions, that we

have in the one-letter case.



Chapter 8

Related Work

In this chapter, we review works in the literature that are relevant to the results presented in

this thesis. We start by briefly mentioning recent papers related to the (approximate) mini-

mization problem for weighted finite automata. Then, we provide an overview of the growing

literature concerned with the extraction of deterministic and weighted finite automata from

neural networks. Finally, we explore the connections with the fields of control theory and

signal processing, where the approximate minimization problem is explored in the context

of model reduction.

8.1 Approximate Minimization of Automata

The problem of minimizing automata has been an important subject of research since the

1950s. There is a remarkable algorithm due to Brzozowski [Brz62, Brz64] that reduces a

DFA to a minimal one. However, its worst-case running time is exponential in the number

of states. Despite this shortcoming, this algorithm has seen a resurgence recently, mainly

because it can be generalized to new models, such as weighted automata [DKV09]. This line

of algorithms is based on a new understanding of Brzozowski’s algorithm from the point of

view of duality [BBRS12, BBB+12, BBH+14, BKP12] and extend readily to other settings.

In the context of quantitative systems, like weighted or probabilistic automata, it becomes

126
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meaningful to investigate the approximate minimization problem. The study of this problem

and of its applications are fairly recent, and only a few works have been published on the

subject. A problem analogous to approximate minimization is addressed by Kulesza, Jiang,

and Singh for the spectral algorithm. The authors provide a bound on the loss of the learned

low-rank model in terms of the singular values that are discarded during training [KJS15]. In

a previous work, the same group of authors connected spectral learning to the approximation

problem of a small class of Hidden Markov models, bounding the error in terms of the total

variation distance [KRS14]. Still in the context of Hidden Markov models, Kotsalis and

Shamma provide bounds for the model reduction problem using the spectral norm as a

measure of the error [KS15]. We remark that the framework of Hidden Markov models is

encompassed by weighted automata [DE08]. Balle, Panangaden, and Precup are the first

authors to formalize the approximate minimization problem for WFAs [BPP15, BPP19].

The technique presented in their paper relies on the construction (and truncation) of the

singular value automaton, a canonical expression for WFAs arising from the singular value

decomposition of the corresponding Hankel matrix (see Section 2.2.1 for more details and

for a formal definition). Their method can be viewed as a generalization to multi-letter

alphabets of the balanced realization approach from control theory [Ant05]. The authors

conclude their analysis by providing bounds on the approximation error in the `2 norm. The

result is supported by strong theoretical guarantees and applies to a large class of WFAs.

This method has later been extended to the setting of weighted tree automata by Balle and

Rabusseau [BR20]. The main limitation of these approaches based on SVA truncation is that

the approximation obtained is not optimal in any norm. We address this point in our first

work, detailed in Chapter 4, where we obtain an algorithm for the optimal approximation in

the spectral norm for the same class of WFAs considered by Balle, Panangaden, and Precup,

but restricted to a one-letter alphabet [BLP+21].
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8.2 Extraction of Automata from Neural Networks

Shortly after their first definition by Elman [Elm90], Cleeremans et al. note that, when

learning a regular language, simple recurrent neural networks tend to cluster their states in

a way similar to the automaton for that language [CSSM89]. More recently, Oliva and Lago-

Fernández expand this line of research by studying the ability of recurrent neural networks

to model and recognize simple regular languages [OLF19]. In particular, they show that

under proper levels of noise and regularization, the RNNs can obtain high accuracy, and

the hidden units display activation patterns similar to the discrete states in a deterministic

finite automaton. In subsequent work, the same authors perform an empirical study of the

stability of RNNs trained to recognize regular languages [OL20]. When a small amount

of noise is introduced into the activation function, an analysis of the network activations

shows a set of clusters resembling discrete states in a finite state machine, with stable and

deterministic transitions between them.

There have been various attempts in the literature to quantitatively analyze the relation

between RNNs (or more generally neural networks) and formal models. This has been done

mainly via structural correspondences or extraction. For the former, the work of Rabusseau,

Li, and Precup [RLP19] shows that WFAs are expressively equivalent to second-order RNNs

with linear activation functions and that there exists a one-to-one mapping between the two

classes. This result leads to a natural extension of weighted finite automata for sequences

of continuous vectors. Moreover, by extending the spectral learning algorithm for WFA, the

authors provide a first provable learning algorithm for linear second order RNNs. This is

notable, particularly in light of the experimental results presented by Quattoni and Car-

reras [QC19], which suggest that several forms of non-linearities can be approximated by

linear models. Finally, another attempt to bridge the gap between RNNs and WFAs can

be found in the paper of Recasens and Quattoni [RQ13], where an extension of probabilis-

tic transducers to continuous inputs is proposed, and in the work of Li, Rabusseau, and

Precup [LRP18], that introduces nonlinear weighted automata.
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Recent works investigate the relationship between convolutional neural networks CNNs,

rational recurrences and finite automata. Quattoni et al. compare a classical CNN archi-

tecture for sequence classification against a simple model based on WFAs [QC20]. Their

experiments suggest that, despite the apparent simplicity of WFA models and training al-

gorithms, the performance of WFAs is comparable to that of CNNs. In a previous work,

Schwartz et al. present a new model combining neural representation learning with WFAs,

and showing that these are more expressive than one-layer CNNs [STS18]. Building on this

work, Peng et al. define the concept of rational recurrence with the objective of tightening

the relationship between WFAs and RNNs for better interpretability [PSTS18]. Specifically,

a RNN is rationally recurrent if its recurrent state can be computed by a WFA [PSTS18]. In

a parallel line of work, Weiss et al. and Merrill et al. explore the expressive power of different

RNN architectures [WGY18b, MWG+20]. They also inspect the computational feasibility of

checking for equivalence and computing the distance between languages recognized by these

models. In particular, the expressive power of rational and non-rational RNNs is compared,

analyzing both state and language expressiveness (the amount of information that RNN

states can capture, and which languages can be recognized when the state is passed to a

classifier). Finally, studying the expressive power of RNNs, Marzouk and de la Higuera show

that the general equivalence problem between WFAs and weighted first-order LM-RNNs is

undecidable [MdlH20].

An alternative and well-studied approach consists in extracting an automaton from a

trained RNN by discretizing and clustering the hidden state space [GMC+92, OG96a, OG96b,

WGY18a, WGY19, OWSH20]. In their works, Giles and Omlin propose a quantization

algorithm on the internal state space of a second-order RNN to extract a deterministic finite

automaton [OG96a, OG96b]. In [OG96a], a clustering algorithm is first used to parse data

into a RNN. The different states obtained by parsing are then stored and the states of

the DFA are obtained using the k-means algorithm. Finally, the transitions between states

are obtained by parsing the needed elements into the RNN. For a survey on approaches to
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clustering in the context of DFA extraction from RNNs, we refer the reader to Jacobsson

[Jac05] and Wang et al. [WZI+18]. Merrill et al. propose a method to extract a DFA from

a RNN inspired by the state merging paradigm from grammatical inference [MT22]. While

performing experiments with their method, the authors noted that continuing to train an

RNN after it has perfectly learned the target language improves the extraction performance.

Weiss et al. achieve state of the art accuracy when extracting a DFA from RNNs trained

over regular languages [WGY18a]. The key idea of the paper is to combine a clustering of

the internal space with an exact learning algorithm to extract a DFA from a given RNN.

In particular, given a RNN-acceptor R trained over a finite alphabet Σ, the objective is to

extract a DFA A that classifies sequences in a way observably equivalent to R. To achieve

this, the authors apply Angluin’s L∗ algorithm [Ang87] using the trained RNN as an oracle.

To make the problem more tractable, a finite abstraction AR,p of the RNN is considered.

AR,p and the DFA A obtained using the L∗ algorithm need to be equivalent to each other.

Whenever they disagree on a sample (equivalence queries) the RNN is used to find the

true classification of the string and decide whether to return it as a counterexample (A was

wrong) or to refine the partition (AR,p was not accurate enough). The membership queries

are instead addressed by using directly the RNN. It is important to note that, even if AR,p

and the DFA A converge, the equivalence of R and A is not guaranteed. In subsequent work,

the same authors extend their result to extract Probabilistic Deterministic Finite Automata

from a RNN language model, using conditional probabilities and a local tolerance to compare

observations [WGY19]. Analogously, Okudono et al. use spectral learning to extract a WFA

from a RNN trained on rational languages, addressing equivalence queries using regression

methods [OWSH20]. Moreover, while most of the literature on extraction focuses on RNNs

modelling languages that are already recognizable by a WFA, the authors briefly explore the

performance of their algorithm over RNNs more expressive than WFAs. Even though it is

relevant to note that the extracted WFA still exposes interpretable structures hidden in the

RNN, the theoretical guarantees necessary to generalize the result are missing. Zhang et al.
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propose a new method to extract WFAs from RNNs using quantization, achieving accurate

approximation even on large-scale tasks [ZDX+21]. The problem of verification of a RNN

is investigated by Wang et al. through rule extraction and k-means clustering [WZOI+18].

In particular, they propose to apply a small perturbation to check robustness to adversarial

examples, using a deterministic finite automaton as an oracle.

A common feature of the extraction algorithms presented above is that they require

access to the inner representation of the RNN in order to find a finite partition of the

latent representations generated and used by the model. In contrast, Ayache et al. and

Eyraud et al. propose a spectral algorithm to extract a WFA from a black-box model

that assigns numerical values to symbolic sequential data, without access to the training

samples [AEG18, EA20]. To achieve this, a complete and prefixed-closed basis is generated,

and the trained RNN is used as an oracle to fill the required sub-blocks of the Hankel

matrix. Finally, a WFA is extracted from the sub-blocks using low-rank factorization. The

experiments show that the quality of the extracted WFA quickly increases as its rank grows,

until a relatively small rank is reached. This behaviour is observed even when the RNN is

trained on data extracted from a language that is not recognizable by a WFA, like in the

case of the SPiCe dataset. Interestingly, this seems to suggest that the RNNs considered

could be computing approximations of rational series.

With the exception of the work of Suresh et al. [SRRS21], where a WFA is extracted from

a given probabilistic model over sequences, with the objective of minimizing the Kullback-

Leibler divergence with the source model, the majority of the works mentioned in this section

evaluate the quality of the extracted WFA in terms of predictive performance. Specifically,

the most commonly used metrics are the word error rate and the normalized discounted

cumulative gain. Note that probabilistic measures such as perplexity are generally not used

when the spectral algorithm is employed, as there are no guarantees that the returned

automaton is probabilistic. While evaluating the predictive performance of a model is an

important step in its validation, it does not provide theoretical guarantees. This makes it
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difficult to compare quantitatively different approximations. In our second contribution,

detailed in Chapter 5, we proceed in a manner similar to Ayache et al. [AEG18], and

consider a generic black-box model trained for language modelling [LPR21]. Moreover, we

work specifically in the general setting of infinite-rank infinite Hankel matrices. This means

that the model considered in our solution is not assumed to be computing a rational function.

We also provide a theoretical analysis of the problem, and guarantees for the convergence of

the approximation operator. We measure the error using the spectral norm, which allows us

to compare quantitatively different classes of models, unlike most of the previous work.

8.3 Control Theory and Signal Processing

The control theory community has largely studied approximate minimization in the context

of linear time-invariant dynamical systems, and several methods have been proposed. We

refer the reader to [Ant05, Mei83] for a complete survey on the subject. A parallel can be

drawn between dynamical systems and automata by noting that the impulse-response of a

discrete time-invariant Single-Input-Single-Output SISO system can be parametrized as a

WFA over a one-letter alphabet. In fact, we can consider the state-variable description for

a discrete-time system, given by the dynamical equation:


x(t+ 1) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

(8.1)

where A ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n, D ∈ Cp×m are constant matrices, while x ∈ Cn,

u ∈ Cm, y ∈ Cp are the vectors of states, inputs and outputs, respectively, and have for

components square-summable sequences of complex numbers. Note that in a SISO system

we have p = m = 1. When the matrix A is asymptotically stable (i.e. all its eigenvalues

lie inside the unit circle) we can derive explicit equations and an expression for the impulse-
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response:

G(t) := (CAt−1B) + δ(t)D for t ≥ 0 (8.2)

where δ(t) = 0 if t > 0 and δ(t) = 1 otherwise. It is now clear that, for t > 0 and p = m = 1,

the impulse-response corresponds to the function computed by a WFA over a one-letter

alphabet, and t denotes the length of a string.

The problem of optimal approximation of control systems with respect to the spectral

norm (also referred to as Hankel norm) has been a major line of research in the 1980s. Kung

and Lin first applied AAK theory to the control theory setting to obtain an approximation

algorithm [Kun80, KL81]. The first state-space solution to the problem is due to Glover, in

the setting of continuous Multi-Input-Multi-Output MIMO systems [Glo84]. The construc-

tion proposed by Glover relies on embedding the initial stable system into an all-pass dilation

of it, having both stable and antistable components. Glover’s method led to a widespread

application of these results, thanks to its computational efficiency and theoretical clarity.

In fact, while a deep understanding of AAK theory requires fundamental tools from func-

tional and harmonic analysis, the approach proposed by Glover is very algebraic. Another

important aspect influencing the simplicity of the result stems from the structure of the Lya-

punov equations of continuous systems. This simplicity however does not extend to discrete

control systems, where the Lyapunov equations have a quadratic form. As noted by Chui

and Chen [CC97], a simple closed-form formula for the state space solution of a discrete

system does not exist. Therefore, most of the solutions proposed for the discrete case rely on

stricter assumptions or are sub-optimal. A first state space solution in the discrete setting

can be found in the work of Ball and Ran, where the authors attack a slightly modified

(and easier) version of the problem, seeking a sub-optimal solution [BR87]. These results

have been reformulated in a descriptor-system framework by Al-Hussari and subsequently by

Ionescu and Oara [AHJL93, IO01]. In the first case, the optimal problem is solved under the

assumption that the singular value σk has multiplicity one [AHJL93], while in the latter the

authors propose an alternative solution for the sub-optimal problem [IO01]. The approach
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most resembling Glover’s method is due to Gu, who provides an elegant solution for the

MIMO discrete problem under the assumption that the singular number has multiplicity

one [Gu05]. This setting (and therefore the one of Glover) is the closest to the problem pre-

sented in Chapter 4. In the chapter, we adapt the concept of all-pass system to the theory of

WFAs, in order to leverage a result from Chui and Chen [CC97] (Theorem 4.2.2). We remark

that the solution proposed in this thesis is optimal, and there is no additional requirement

on the multiplicity of the singular number considered for the error. Finally, we note that a

solution for the SISO case can also be found by using a polynomial approach [Ant05]. The

result, in this case, holds without any additional assumption but does not provide an explicit

representation of the state space of the solution. Moreover, it does not generalize well to the

MIMO setting, while a state-space approach does.

A partial solution for the approximation problem of infinite-dimensional systems can

be found in the work of Glover, Curtain and Partington [GCP88]. The extensive work

of Chui [CLW91, CLW92, CL94] analyzes the continuity of approximation and truncation

methods in signal processing. In particular, part of the analysis presented in Chapter 5 is

backed by results from Chui [CL94], and our contribution builds upon its work. In the paper,

Chui studies the conditions guaranteeing the continuity of the approximation operator. He

shows that the approximation operator converges whenever its singular numbers are simple

and provides examples of converging sequences of Hankel operators. His analysis is missing

a clear criterion to check the condition on the singular numbers, that we provide using tools

from random matrix theory.

We conclude this section by mentioning that AAK theory has more recently been applied

to the problem of sparse approximation of structured signals in signal processing, providing

interesting results in the `p norm [ACd11, PP16].



Chapter 9

Conclusion

This chapter is dedicated to the concluding remarks of this thesis. After summarizing our

contributions and the implications of our work, we discuss the main limitations of the pro-

posed techniques. Finally, we provide possible directions for future work.

9.1 Summary of Contributions

This thesis makes several contributions to the approximate minimization problem of models

on sequential data. While tackling this problem, we tightened the connections between the

study of weighted finite automata and discrete dynamical systems. Chapter 3 and Chap-

ter 6 provide a framework to reformulate the approximate minimization problem of models

over one-letter or multi-letter alphabets in terms of functional analysis and noncommuta-

tive multivariable operator theory, respectively. While a parallel can be drawn between the

one-letter framework and certain results in control theory, the multi-letter setting can be

seen as a completely novel approach to this problem. We remark that the proposed frame-

works are relevant beyond the approximate minimization problem: we consider this to be

an interesting contribution on its own, as it opens the doors to new potential applications of

these mathematical theories to the field of language modelling. This would not be the first

time that functional analysis methods are applied to solve machine learning problems. For
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example, one can think of the use of Reproducing kernel Hilbert spaces in machine learning

[HSS08], or the recent application of Fourier analysis to study the spectral bias of neural

networks [RBA+19]. Chapter 4 and Chapter 5 focus on the case of one-letter alphabets, and

address in this setting the research questions Q1 and Q2 stated in Chapter 1. We highlight

the parallel between this type of approximation problem and the model reduction task in

control theory and signal processing. We adapt some of the formalism of these fields to

the case of WFA and black boxes. In particular, in Chapter 4 we study the approximate

minimization problem of irredundant WFAs over a one-letter alphabet. To do so, we use

the WFAs’ parameters to define complex functions on the unit circle. This allows us to

apply the results from AAK theory and to provide a closed-form solution for the optimal

approximate minimization problem in the spectral norm. While the underlying theory of

complex functions supporting our method can be a bit involved, the proposed algorithm

relies only on simple algebraic manipulations and can be run in polynomial time. In Chap-

ter 5, we extend these results to more general black-box models trained on sequential data

for a language modelling task. Unlike the majority of works in the literature, that focus

on specific models (for example RNNs) computing a rational function, we do not assume

any knowledge on the internal structure of the model, nor on the training data. Moreover,

we specifically study models computing a function that cannot be recognized by a WFA.

We also provide theoretical guarantees on the convergence of our approximation. We then

apply AAK theory and obtain an algorithm returning a WFA of fixed size that approxi-

mates the model asymptotically optimally. This is particularly important, as it constitutes

a first step towards developing provable approximation algorithms for black-box models. Fi-

nally, we use the spectral norm as a measure of the error between a given black box and

its asymptotically-optimal approximation. This allows us to compute the distance between

WFAs and black-box models, and to obtain bounds in the `2 norm. Even though this result

relies on strong assumptions on the size of the alphabet, it still constitutes the first algo-

rithmic attempt to find the optimal approximating WFA while providing strong theoretical
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guarantees and a precise estimate of the error. Chapter 6 and Chapter 7 are devoted to

the case of multi-letter alphabets, and partially address the question Q3 from Chapter 1.

We propose a way, similar to the one-letter case, to associate a noncommutative rational

function to a given WFA. Then, we try to address the question of whether or not the proof

of the noncommutative AAK theorem can be made constructive. While we don’t manage

to provide a definitive answer, we lay out possible approaches that can be used to tackle

the problem. This overview bridges methods from multivariable noncommutative operator

theory and system theory. Given the variety of sources, and the depth of the results that we

analyze, we believe that providing a unified source for these methods is of intrinsic value.

9.2 Limitations and Directions for Future Work

In this section, we list the main limitations of this thesis, and suggest ways to address them

as possible directions for future work.

Size of the Alphabet

The main limitation of this work is that the proposed method is constructive only in the case

of models computing functions over one-letter alphabets. Generalization to a multi-letter

setting has proven to be rather challenging, and it is hard to predict when (or whether at

all) it will be possible to obtain an algorithm for this case. Therefore, while the results still

bears theoretical relevance and novelty, the possible direct applications are very limited.

The most compelling direction for future work is to extend the results to the case of

multi-letter alphabets. Obtaining a constructive proof of the noncommutative AAK theorem

would unlock several directions worth investigating. The first, most direct step, would be

to generalize the results of Chapter 4 and obtain an algorithm for WFA extraction from a

WFA of a bigger size in the multi-letter case. It would then be interesting to investigate if

the convergence results from Chui and li [CL94], that we applied to study the approximation
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of infinite-rank infinite Hankel matrix, still hold for the multi-letter setting. This step is

necessary if we want to use the method to study the approximation of black boxes on

sequential data.

Evaluating the Spectral Norm

In Section 3.1.1, we listed relevant properties of the spectral norm. We think the spectral

norm has desirable characteristics, that make it a solid candidate for the approximate min-

imization task. Nonetheless, a big limitation of this work is that we do not have a clear

picture of how effective it is to use the spectral norm to evaluate the approximation of

WFAs and black boxes. Concretely, we do not know how the spectral norm performs with

respect to more popular metrics such as behavioral metrics, word error rate, or normalized

discounted cumulative gain. This problem is a collateral effect deriving from the size of the

alphabet. The comparison between spectral norm and other kind of norms is possible only

in the multi-letter setting, making it impossible to test in the one-letter case. Obtaining

algorithms for the multi-letter case will thus directly open the possibility of evaluating the

quality of the spectral norm. The algorithm for black-box models presented in Chapter 5

provides other avenues that would be interesting to explore. In particular, the sequence of

truncated Hankel matrices could be defined in alternative ways. Exploring experimentally

how different truncations influence the convergence rate is an interesting direction for future

work.

Beyond Language Modelling

To apply the AAK theorem, we required the Hankel operator considered to be compact.

To guarantee that this property is satisfied, we restricted our focus to models computing

functions f ∈ `1. For WFAs, this means considering only automata that are irredundant. For

black-box models, we instead required a language modelling task. It is important to remark

that, while this kind of task is encompassed in the hypothesis f ∈ `1, the class of functions
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that satisfy this property is actually bigger. Nonetheless, it would be interesting to explore

ways to extend the method beyond this hypothesis. In Chapter 4 we illustrated a possible

approach in the case of WFAs. In future work, it would be interesting to investigate how

these methods can be applied to other machine learning settings, for example reinforcement

learning.
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[TV14] Terence Tao and Van Vu. Random Matrices Have Simple Spectrum, 2014.

arXiv:1412.1438.

[vNW93] J. von Neumann and E. P. Wigner. Über das Verhalten von Eigenwerten bei
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Appendix A

Elements of Functional Analysis

A.1 Inner-Outer Factorization

Every function in the Hardy space can be factorized using inner and outer functions.

Theorem A.1.1 (Inner-Outer Factorization [Smi29]). Let f ∈ H2, f 6= 0. Then there exist

an inner function θ ∈ H2 and an outer function g ∈ H2 such that:

f = θg. (A.1)

Moreover, such factorization is unique uo to a constant factor, and Span{znf : n ≥ 0} =

θH2.

We recall the definition of Blaschke products. The sequence {λi}i≥0 of points inside the

unit disk is said to satisfy the Blaschke condition if
∑

n≥0(1− |λn|). For λ ∈ D, we define a

Blaschke factor by:

bλ =
|λ|
λ

λ− z
1− λz

. (A.2)

Definition A.1.1. A Blaschke product is defined, given a sequence {λi}i≥0 of points
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inside the unit disk satisfying the Blaschke condition, as the infinite product:

B = Πn≥0bλn = lim
r→1

Π|λn|<rbλn . (A.3)

To summarize, a Blaschke product is a bounded analytic function in the open unit disc

constructed to have zeros at a sequence of prescribed complex numbers. In the case of

uniformly bounded analytic functions in the disc, the inner-outer factorization can be further

refined by breaking the inner part into two factors, an inner function without any zero (a

singular inner function), and an inner function with zeros (a Blaschke product).

Theorem A.1.2 ([Her11, Rie22, Beu49]). Let f be a bounded analytic function in D. Then

f admits a Blaschke-singular-outer factorization:

f = B · s · g, (A.4)

where B is a Blaschke product, s is singular inner and g is an outer function.

We recall a last result, which follows from Beurling’s Theorem. The proof, which relies

on properties of the reproducing kernel associated to λ ∈ D, can be found in the book of

Nikolski [Nik02].

Theorem A.1.3. Let θ ∈ H2 be an inner function and let Kθ = H2	 θH2 be the orthogonal

complement of a shift-invariant subspace. The following are equivalent:

• Kθ is finite dimensional

• θ = B = Πn≥0bλn is a finite Blaschke product.

Moreover dimKθ = degθ, where degθ stands for the degree of θ, if θ is a finite Blaschke

product, and degθ =∞ otherwise.
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A.2 Proof of AAK Theorem

In this section, we summarize the main components of the proof of the AAK theorem

[AAK71]. The complete proof can be found in the original article of Adamyan, Arov and

Krein [AAK71], or in the book of Nikolski [Nik02, Theorem 7.2.1].

We recall the statement of the AAK theorem.

Theorem A.2.1 (AAK Theorem [AAK71]). Let Hφ be a compact Hankel operator of rank

n, matrix H and singular numbers σ0 ≥ · · · ≥ σn−1 > 0. Then there exists a unique Hankel

operator Hψ of rank k < n such that:

‖Hφ −Hψ‖ = σk.

Before proceeding with proof of the theorem, we need the following lemmas (the proofs

can be found in the book of Nikolski [Nik02]).

Lemma A.2.2. [Nik02, Lemma 7.2.5] Let {ξk,ηk} be a σk-Schmidt pair of Hφ. Then, the

function:

φs =
ηk
ξk

is unimodular almost everywhere on the unit circle and does not depend on the choice of the

Schmidt pair {ξ,η}.

Lemma A.2.3. [Nik02, Lemma 7.2.6] Let ξk ∈ ker(H∗φHφ − σ2
k1) and let Θ be the greatest

common divisor of the inner parts of nonzero functions ξk ∈ ker(H∗φHφ − σ2
k1). Then θξk ∈

ker(H∗
θφ
Hθφ − σ2

k1) for every inner divisor θ of Θ.

Lemma A.2.4. [Nik02, Lemma 7.2.4] Let A be an operator and let λ > σ∞(A) be a sin-

gular number with corresponding multiplicity µ + 1, so that λ = σk(A) = σk+1(A) = · · · =

σk+µ(A) > σk+µ+1(A). If B = UAV , where U and V are contractions, then:

dim ker(B∗B − λ21) ≤ k + µ+ 1.
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Lemma A.2.5. [Nik02, Lemma 7.2.7] Following the notation of Lemma A.2.3, we have:

dim ker(H∗φHφ − σ2
k1) + deg Θ ≤ dim Span{θ ker(H∗φHφ − σ2

k1) : θ is an inner divisor of Θ}.

Proof of the AAK Theorem. We assume σk > σ∞. The proof can be divided in three

steps.

(1) Define the symbol of the best approximation.

Let ξk ∈ ker(H∗φHφ − σ2
k1) be a σk function. We set:

ψ = φ− Hφξk
ξk

.

It is possible to prove that the function ψ ∈ L∞ does not depend on the particular

choice of ξk.

(2) Show that it is the optimal approximation: ‖Hφ −Hψ‖ ≤ σk

It is easy to see that:

‖Hφ −Hψ‖ =

∥∥∥∥HHφξk
ξk

∥∥∥∥ ≤ σk

∥∥∥∥Hφξk
σkξk

∥∥∥∥
∞
≤ σk

where the last inequality follows from the fact that the function
Hφξk
σkξk

is unimodular

almost everywhere on the unit circle (Lemma A.2.2).

(3) Show that it has the right size: rank(Hψ) ≤ k.

We start by noting that, for any nonzero ξk ∈ ker(H∗φHφ − σ2
k1), we have:

Hψξk = P−
(
φξk −

Hφξk
ξk

ξk

)
= P−φξk −Hφξk = 0.

It follows that ker(H∗φHφ− σ2
k1) ⊂ ker(Hψ). Since the kernel of a Hankel operator is a
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shift-invariant space, by Theorem 2.4.5 follows that:

ΘH2 ⊂ kerHψ

where Θ is the greatest common divisor of the inner parts of nonzero functions ξk ∈

ker(H∗φHφ − σ2
k1). Therefore, we have:

rankHψ = dimHψ(H2) = dim(kerHψ)⊥ ≤ dim(ΘH2)⊥ = deg Θ.

To conclude the proof it is enough to show that deg Θ ≤ k. Let A = Hφ, let U = 1

and V = Θ be the operator of multiplication by Θ. Note that UAV = HφΘ = HφΘ,

so applying Lemma A.2.4 we obtain:

dim ker(H∗φΘHφΘ − σ2
k1) ≤ k + µ+ 1

where µ+1 = dim ker((H∗φHφ−σ2
k1). This means that HφΘ and Hφ both have singular

value σk, and they coincide in the shift-invariant space spanned by ker((H∗φHφ − σ2
k1).

Now, by Lemma A.2.3 we get:

L := Span{θ ker(H∗φHφ − σ2
k1) : θ is an inner divisor of Θ} ⊂ ker(H∗φΘHφΘ − σ2

k1).

Applying Lemma A.2.5 we obtain:

dim ker(H∗φHφ − σ2
k1) + deg Θ ≤ dimL ≤ dim ker(H∗φΘHφΘ − σ2

k1)

which proves that deg Θ ≤ k.
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Proofs

B.1 Proofs of Chapter 4

Proof of Theorem 4.2.2. In order to prove Theorem 4.2.2 we need an auxiliary lemma

[CC97, Lemma 6.1]. These are the analogous of some control theory results, rephrased in

terms of WFAs. The original theorem and lemma, together with the corresponding proofs,

can be found in [CC97]. Hence, we only provide a sketch of the proofs.

Lemma B.1.1 ([CC97]). Let E = 〈αe,Ae,βe〉 be a minimal WFA. Let e(z) = α>e (z1 −

Ae)
−1βe−C, if σ−1

k e(z) is unimodular, then there exist a unique invertible symmetric matrix

T satisfying:

(a) A>e Tβe = αeC

(b) σ2
kα
>
e T−1A>e = Cβ>e

(c) A>e TAe − C−1A>e Tβeα
>
e = T

Proof. Since σ−1
k e(z) is unimodular, we have that:

e(z)e∗(z̄−1) = σ2
k1 (B.1)
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where we denote with e∗ the adjoint function. From the equation above, we obtain:

e∗(z̄−1) = σ2
ke
−1(z) = σ2

k(−C +α>e (z1−Ae)
−1βe)

−1 (B.2)

= −σ2
kC
−1 − σ2

kC
−1α>e ((z1− (Ae + C−1βeαe))

−1βeC
−1 (B.3)

where we used the matrix inversion lemma. On the other hand we have:

e∗(z̄−1) = −C + β>e (z−11−A>e )−1αe (B.4)

= −C + β>e (−A−>e (1− zA>e ) + A−>e )(1− zA>e )−1αe (B.5)

= −(C − β>e A−>e αe)− β>e A−>e (z1−A−>e )−1A−>e αe (B.6)

where we used again the matrix inversion lemma before grouping the terms. If the quantities

in Equation B.3 and Equation B.6 have to be equal, we need their constant term to be the

same. Then, we want the H∞− -components to correspond, so we consider the corresponding

Hankel matrices. It is easy to see that we can once again associate the coefficients of these

complex functions to the parameters of a WFA. From the minimality of E we obtain:


σ2
kC
−1α>e = β>e A−>e T

Ae + C−1βeαe = T−1A−>e T

βeC
−1 = T−1A−>e αe

(B.7)

where T is an invertible matrix [BCLQ14]. This system is equivalent to:


σ2
kα
>
e T−1A>e = Cβ>e

A>e TAe − C−1A>e Tβeα
>
e = T

A>e Tβe = αeC

(B.8)

To conclude the proof it remains to check that T is symmetric, and this can be done by
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direct computations.

Proof of Theorem 4.2.2. This proof follows easily from Lemma B.1.1 by setting P =

−σ2
kT
−1 and Q = −T. We obtain point (c) by direct multiplication. Then, we substitute

the last equation in B.8 into the second one, and we obtain:

A>e TAe −αeα>e = T (B.9)

which verifies point (b) with Q = −T. Point (a) can be obtained analogously combining the

first and second equations in B.8.

B.2 Proofs of Chapter 5

Riesz Eigenvalues Inequality

The following result is used in the proof of Theorem 5.2.4 and to establish the relation

between the singular value of the original Hankel matrix and the one of the truncation. This

result is due to [RSN55] (see [KG69] for the proof and for a more general version of this

theorem).

Lemma B.2.1 ([RSN55]). Let T, S be two self-adjoint compact operators, and let σTk , σSk

for k ≥ 0 be their singular numbers. Then:

|σTk − σSk | ≤ ‖S−T‖. (B.10)

We remark that, while the original statement is about eigenvalues, in our setting this

holds automatically for singular values.
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Cauchy’s Interlace Theorem

Cauchy’s Interlace Theorem is used in the proof of Theorem 5.2.4. We refer the reader

to [Hwa04] for a proof this theorem.

Theorem B.2.2 (Cauchy’s Interlace Theorem). Let A be a n × n Hermitian matrix, let

B be the principal submatrix of A of order (n − 1) × (n − 1). If λ0 ≥ · · · ≥ λn−1 are the

eigenvalues of A, and µ0 ≥ · · · ≥ µn−2 are the eigenvalues of B, then:

λ0 ≥ µ0 ≥ λ1 ≥ µ1 ≥ . . . λn−2 ≥ µn−2 ≥ λn−1. (B.11)

Rank of the Principal Submatrix

We conclude by recalling the result of [Al’17], which shows the relation between the rank of

the Hankel matrix and the one of its leading principal submatrix.

Theorem B.2.3 ([Al’17]). A Hankel matrix H has a finite rank r if and only if the first r

rows of H are linearly independent, and generate the row r + 1 as a linear combination.
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